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ABSTRACT  

The use of machine learning tools in modern materials science can significantly reduce the duration and cost of developing new 

materials and improving the properties of existing ones. This is especially true in studying expensive and strategic importance 

materials like alloys of rare earth metals, which are used to manufacture high-energy permanent magnets. At the same time, single 

machine learning algorithms do not always provide the accuracy required to solve a particular applied task. Therefore, the current 

paper aimed to develop an ensemble model for predicting the magnetic properties of Sm-Co system alloys with high accuracy. 

Based on literature data, we have collected the dataset of the relationship between phase composition, sample state, crystallographic 

orientation, microstructure, and magnetic properties. We have compared different machine learning algorithms. A stacking ensem-

ble model was designed based on high-precision machine learning algorithms: Neural Networks, AdaBoost, Gradient Boosting, and 

Random Forest algorithm. The proposed ensemble scheme showed a significant increase in the accuracy for predicting the magnetic 

properties of Sm-Co alloys on the example of coercivity. 
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INTRODUCTION 
 

Due to their high magnetic properties at both room and elevat-
ed temperatures, permanent magnets based on Sm-Co system 
alloys are widely used in aerospace technology, various 
sensors, wind turbines, hybrid electric vehicles, etc., due to 
their high magnetic properties at both room and elevated 
temperatures [1,2]. Compared to the magnets of the Nd-Fe-B 
system, the main advantage of these magnets is the possibility 
of reliable operation at temperatures up to 500 °C. Because of 
the unceasing trend towards miniaturization of products, 
especially in high-tech industries, and the high cost and scarci-
ty of the leading chemical elements of Sm-Co magnets, the 
primary efforts of researchers are currently aimed at develop-
ing new technologies to improve their properties. It is theoreti-
cally predicted [3] that the magnetic properties of nanocompo-
site magnetic materials consisting of nanoscale hard and soft 
magnetic phases can be twice as high as the properties of 
advanced permanent magnets. One of the promising methods 
for forming such a structure is hydrogen treatment using 
hydrogenation-disproportionation-desorption-recombination 
(HDDR) [4]. To date, there is a massive amount of experi-
mental data on the phase transformations and the microstruc-
ture evolution in alloys based on SmCo5 and Sm2Co17 com-
pounds depending on the modes of hydrogen treatment [5,6]. 
The magnetic properties of these alloys are susceptible to the: 

phase composition; microstructure features; the size of the 
structural components; the presence of crystallographic texture, 
etc. The experimental verification of the influence of these 
parameters on the magnetic properties is highly time-
consuming and resource-intensive. This process can be signifi-
cantly simplified, shortened, and reduced in price by using 
machine learning (ML), artificial intelligence, or neural net-
work modeling for preliminary prediction of magnetic proper-
ties and subsequent experimental confirmation [7-9]. The 
availability of this approach was demonstrated by a wide range 
of examples, including materials for alkaline-ion batteries [9], 
green energy [10], medical destination [11], additive technolo-
gies [12], alloys with shape memory effect [13], magnetic 
materials [14-16], etc. For instance, the authors [14] showed 
the possibility of ML tools application to create new soft 
magnetic materials. In this case, the experimental data on the 
influence of chemical composition, modes of thermal treat-
ment, and grain size on magnetic properties were used to 
predict saturation magnetization, coercivity, and magneto-
striction of different alloys using a random forest model. The 
domain structure of Sm (Co, Fe, Cu, Zr)7.5 alloy [15] was 
simulated depending on the heat treatment modes using FMRM 
software [17], developed based on a phenomenological ap-
proach to the analysis of reversal magnetization processes. 
Calculations based on the DFT method were used to predict the 
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effect of transition elements on the structure and magnetic 
properties of SmCo5-based alloys [18]. 
A literature review shows that modern materials science uses a 
wide arsenal of computer modeling methods, ranging from 
electronic structure calculations based on the theory of density 
functional (DFT method) [19], molecular dynamics [20], 
Monte Carlo [21], and the phase field [22] methods and ending 
with the macroscopic approach, when existing machine learn-
ing methods are used for analysis using computer programs 
such as the Toolkit for Modeling Materials for Machine 
Learning (MAST-ML) [23]. 

In general, machine learning tasks, most widely used in materi-

als science, can be divided into regression, clustering, and 

classification. Besides, the problem of probability estimation is 

considered mainly for the discovery of new materials. At the 

same time, the tasks of regression, clustering, and classification 

in the vast majority of studies are used to predict the properties 

of materials at the macro and micro levels. In addition, ma-

chine learning methods are usually combined with various 

optimization algorithms, such as genetic algorithm (GA), 

annealing simulation algorithm (SAA), or particle swarm 

method (PSO), which are mainly used to optimize model 

parameters [7]. 

However, in addition to the apparent advantages, it is necessary 

to pay attention to a number of problems associated with 

predicting the properties of materials. First of all, it is the 

correlation dependence of properties on the microstructure, the 

parameters of which are pretty challenging to consider and 

describe for computer modeling. In addition, these relation-

ships are individual for each system that requires an unconven-

tional approach. When predicting the properties of materials, it 

is challenging to build a computational model that fully de-

scribes the complex relationships between many factors 

(chemical and phase composition, microstructure parameters, 

size of structural components, etc.) that affect the properties 

and is often unknown. Therefore, there is an urgent need to 

develop intelligent and highly efficient prediction models that 

can correctly predict the properties of materials at a short time 

and at a low cost. The basic idea of using machine learning 

methods to predict the properties of materials is to analyze and 

distinguish the relationships (primarily nonlinear) between 

different factors by extracting knowledge from existing empiri-

cal data. This approach allows us to fundamentally understand 

the relationship between the structure and properties of a 

particular material and their change during technological 

operations of production and processing. However, single 

machine learning algorithms do not always provide the accura-

cy required to solve a specific applied problem. Therefore, in 

recent years, the ensemble approach by combining several 

machine learning algorithms to increase the accuracy of 

prediction or classification has become quite common. 

Therefore, this paper aims to develop an ensemble model based 

on a set of heterogeneous ML-based regressors to solve the 

problem of Sm-Co alloy's magnetic properties prediction. 

The main contribution of this paper can be summarized as 

follows: 

 based on the study of a large number of literature sources, 

we collected a set of data on the dependence of the mag-

netic properties of Sm-Co alloys (coercivity Hc, saturation 

magnetization Ms, remanence Mr and maximum energy 

product (BH)max) on chemical and phase composition, mi-

crostructure parameters, size of structural components, the 

presence of crystallographic texture, and the state of the 

test material (powder or sintered magnet/ribbon); 

 by experimental modeling, we evaluated the efficiency of 

eight existing machine learning algorithms based on the 

collected data set to solve the problem of predicting the 

magnetic properties of the Sm-Co system alloys on the 

example of coercive force; 

 we have developed a stacking model for predicting 

coercivity of Sm-Co alloys based on a set of the most effi-

cient heterogeneous machine learning algorithms; we 

have shown a significant increase in the accuracy of its 

operation compared to existing machine learning algo-

rithms. 

 
 
MATERIAL AND METHODS 
Data collection 

The formation of the original database was carried out based on 
literature data. Technological methods of production and 
processing of Sm-Co system alloys were not considered 
because, in the last case, the magnetic properties are deter-
mined by the formed microstructure and phase composition 
parameters. Each observation (so-called vector) entered into 
the database contains input information on the content of 
chemical elements in the alloy, main and impurity phases, the 
average size of structural components, the existence of crystal-
lographic texture, basic microstructure characteristics, and 
magnetic properties as a result of interrelation between them 
(Fig. 1). It should be noted that a detailed analysis of more than 
300 literature sources published over the past 10 years has 
shown that only about 30% of publications fully contain this 
information. Besides, data on coercivity are presented in all 
these publications, while information on other magnetic 
properties is given lesser. That is why we chose coercive force 
as a prediction characteristic. The main difficulties in data 
selection were related to the authors' use of different measure-
ment units and different approaches to describing the micro-
structure. In addition, a minimal number of publications 
contain numerical data on the proportion of phases in the 
studied materials and the effect of doping with such rare earth 
elements (REM) and 3d transition metals (TM) as La, Ce, Pr, 
Ti, and Ni. Accordingly, the features of the database are as 
follows. The content of chemical elements (the total content is 
given for REM and Ti and Ni), the average size of the structur-
al components, and magnetic properties are represented by 
numerical values. In this case, the numerical values were 
converted to the following units: the content of elements - at. 
%; the average size of the structural components - nm; coercive 
force Hc - kOe, saturation magnetization Ms and remanence 
Mr - emu/g; maximum energy product (BH)max - MGOe. Data 
for all other parameters were transformed into a binary system 
as follows: 

 phase composition: 1 corresponds to the presence of the 

phase, and 0 indicates its absence; 

 state of material: the database presents the magnetic 

properties measured on powders or sintered mag-

nets/ribbons. The form of investigated material is marked 

as 1 for "powder" and 0 for "sintered magnet/ribbon" in 

the case of powders and vice versa when otherwise; 

 texture: 1 corresponds to the crystallographic orientation 

of a main ferromagnetic phase along the axis of easy 

magnetization (c-axis) while 0 indicates the absence of di-

rection; 

 microstructure: 1 means "yes" when 0 means "not," as 

described below. 

For simplicity, all possible types of microstructures were 

compiled to lamellar, flake, nanocrystalline, and cellular. In 

many cases, analyzed microstructures show a mixture of the 

parameters denoted by 1 in corresponding columns of the 

database. Absent types of microstructures were indicated by 0. 

In addition, the microstructure of each observation was charac-

terized by such parameters as homogeneity (the uniform 

structure is denoted by 1) and regularity (the regular structure 

is represented by 1). 
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The resulting database [102] contains 419 vectors, each de-

scribed by 31 input features collected from [24-101] (see Table 

in the Appendix). 

 
Investigated predictors  
Nowadays, there are many methods of machine learning that 
are successfully used to solve applied problems in material 
science. Moreover, many software packages, which implement 
a number of optimized versions of such methods with an 
intuitive and simple interface for the intellectual analysis of 

data, have been developed. One of them is Orange [103]. It 
contains a set of machine learning algorithms, in particular, to 
solve the regression task.  
One of the simplest and most commonly used machine learning 

methods is a linear regression with Lasso or Ridge regulariza-

tions. It is designed to establish a linear relationship between a 

set of independent attributes and a dependent variable. The 

disadvantage of this method is low accuracy in the case of 

processing significantly nonlinear dependencies.

 
Fig. 1 Schematic representation of the initial database for modelling 

 
Stochastic gradient descent (SGD) is one of the fastest methods 
to minimize the loss function used in constructive learning 
methods. It is based on the method of gradient descent, which 
is used as an algorithm for training multilayer perceptron and 
deep neural networks. Despite the high speed, it does not 
always provide high prediction accuracy. Support Vector 
Regression (SVR) is a well-known linear machine learning 
method, which does not essentially differ from SVM, except in 
the case of the formation of the output signal. The technique 
involves the construction of an optimal hypersurface that will 
separate objects of different classes. For taking into account 
nonlinearities in the data, the method uses various kernel 
functions. This approach provides a significant increase in 
accuracy in the case of solving substantially nonlinear tasks. 
The Tree method is one of the simplest machine learning 
methods. It builds a tree whose nodes define data of different 
classes. This method is a precursor to the Random Forest and, 
therefore, significantly inferior to it in the accuracy. In turn, the 
Random Forest algorithm belongs to the ensemble class. The 
method is based on the principles of bagging and the technique 
of random spaces. It builds a set of trees, each of which pro-
vides a low prediction accuracy. However, the overall consid-
eration of the output of each Tree offers significantly better 
results. However, this approach requires a lot of memory to 
store the model that is its disadvantage. 
AdaBoost and Gradient Boosting are other types of ensemble 
methods. They are based on an iterative algorithm, where at 
each subsequent iteration, the algorithm considers the errors 
obtained in the previous iteration. This approach allows the use 
of weak regressors to build an accurate model. Since AdaBoost 
is the first algorithm in its class, Gradient Boosting is much 
more flexible. However, these methods are time-consuming 
due to the iterative algorithm of their work. 

The neural network approach, in particular, the multilayer 

perceptron, can carry out a high-precision approximation. 

However, the iterative nature of the learning algorithm, the 

selection of optimal values of the required parameters, etc., 

imposes a number of restrictions on its application. Although it 

offers a simpler prediction algorithm than statistical methods, it 

has no functional advantages over them. 

The timely and optimal implementation of all considered 

methods in Orange allows for their use in this study. The aim 

of their consideration is that some such heterogeneous machine 

learning methods will form the basis of the stacking ensemble 

model proposed in this article. 

 

Proposed model 

This work aims to build a prediction model that will provide 

the highest accuracy in solving the assigned task. In this case, 

instead of single-based regressors, which do not consistently 

demonstrate high efficiency, we use an ensemble approach. It 

is based on the use of a set of basic regressors, the results of 

which are summarized by a metaregressor. This will increase 

the accuracy compared to the use of single models that form 

such a model. The literature considers three main approaches to 

constructing ensemble models: boosting, bagging, and stack-

ing. 

The boosting approach involves the iterative step-by-step 

execution of the prediction algorithm. Its feature is that the 

selected ML-based regressor of each subsequent step must 

consider the regressor errors of the previous step. After per-

forming all the necessary steps, the boosting algorithm com-

bines all the answers into one resulting rule. The disadvantage 

of this approach is the large number of iterations needed for the 

effective operation of methods of this class, which requires 

considerable time for their work. 

Bagging involves the use of only one machine learning method 

as a basic algorithm. However, its training needs a large 

number of data subsamples. These subsamples are formed by 

dividing the primary data set intended for model learning, 

where each subsample may contain a set of observations that 

are repeated in other ones. The disadvantage of this approach is 

the necessity to divide the total data set into small subsamples, 

which can reduce the generalizing properties of methods of this 

class. 

The stacking approach uses a set of heterogeneous or homoge-

neous algorithms that can work in parallel. Each of them is 

trained on the whole data set. The results of all members of the 
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stacking model are weighed by a user-defined method. The 

disadvantage of this approach is the need for significant 

computing power to implement parallel training of all members 

that form the stacking model. However, modern hardware 

development eliminates this disadvantage and allows using a 

stacking approach for solving the various applied tasks. 

In this work, we build a prediction model based on the stacking 

approach. The model assumes the presence of basic N-

algorithms that will form a stacking ensemble. The meta-

algorithm will weigh the results of their work. The work of the 

meta-algorithm will determine the impact of solving the stated 

task. A simplified flowchart of this approach is shown in Fig. 

2. 

The data set collected by us to solve the problem of predicting 

the magnetic properties of Sm-Co alloys contains many 

independent attributes. In addition, there are complex and 

nonlinear, unobvious and unexplored relationships between 

different features. It is evident that, in particular, many linear 

machine learning methods will not provide sufficient accuracy. 

If such algorithms are included in the general ensemble model, 

they will reduce the accuracy of their work. That is why we 

propose to perform a preliminary selection of basic algorithms 

that will form a stacking ensemble. It is based on initial model-

ing of machine learning algorithms and evaluation of their 

efficiency using some criteria, in particular: 

 

ML-based method 1

ML-based method 2

ML-based method N-1

ML-based method N

Meta-

algorithm
OutputInput data

 
Fig. 2 A simplified flowchart of the stacking heterogeneous 

ensemble model 
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It is known that the values of the coefficient of determination (

2R ) are in the range of 0 to 1. High values of this indicator 

show a clear relationship between the dependent and the set of 

independent attributes. Accordingly, values close to 0 indicate 

the absence of such a relationship; negative values of 
2R  

show the complete inadequacy of the chosen machine learning 

model. 

In this work, we propose including a machine learning algo-

rithm in the stacking model based on the efficiency of its 

position
2R . Since a value of 0.5 indicates the adequacy of the 

selected model to solve the prediction task, the criterion for 

including a machine learning algorithm in the stacking ensem-

ble model will be as follows: 
 

2 0.5R                         (5.) 

 
Thus, the proposed stacking model will form a set of basic 

machine learning algorithms that provide satisfactory results. 

However, their combined use by weighing their output signals 

by a certain meta-algorithm should increase the prediction 

accuracy. 

 
RESULTS AND DISCUSSION 
 
The simulation of all the methods studied in this work was 

based on the data set collected by us. It contains 419 vectors, 

each of which is characterized by 31 independent attributes. 

The value of coercivity was the output-dependent attribute. The 

data set was randomly divided into training (80%) and test 

(20%) samples (at each start of one or another method). Each 

experiment was repeated ten times. As a result, this article 

presents the average results (after ten runs) of all studied 

techniques. 

The experimental modeling was performed using the Orange 

data analysis and visualization tool [102]. This visual pro-

gramming tool contains a set of all the necessary machine 

learning methods, tools for building stacking models, and 

powerful tools for visualizing the work results. It was chosen to 

solve the assigned task due to simplicity, clarity, and ease of 

use. 

 
Performance evaluation of the investigated ML-based 

algorithms 

In this work, the experimental comparison of the efficiency of 

eight existing machine learning methods using the criteria (1) - 

(4) is carried out. 

A flowchart of this process created using Orange tools is 

shown in Fig. 3. 
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Fig. 3 Flowchart of the performance evaluation scheme for all 

investigated ML-based algorithms using Orange software 

 

The purpose of this experiment is to evaluate the accuracy of 

the existing regressors and select the best of them based on (4) 

according to criterion (5) to build a stacking model. All the 

studied methods based on criteria (1) - (4) are summarized in 

Table 1. 

As can be seen from Table 1, linear regression, SGD and SVR 

show the lowest accuracy by all indicators. Somewhat better 

results were obtained when using the Tree algorithm. However, 

the accuracy of its work is not sufficient. Ensemble methods 

and an artificial neural network are algorithms that satisfy 

criterion (5). They will be the basis of the proposed stacking 

model of heterogeneous regressors. 

Table 1 The results of prediction based on criteria (1) - (4) 

using all the studied machine learning algorithms 

Machine learning method 

Performance indicators 

MSE 
RMS

E 
MAE R2 

Tree 71.317 8.445 5.822 0.413 

SVR 95.180 9.756 6.540 0.217 

SGD 76.139 8.726 5.782 0.374 

Random Forest 49.713 7.051 4.473 0.591 

Neural Network 55.655 7.460 4.995 0.542 

Linear regression 75.630 8.697 5.951 0.378 

Gradient Boosting 49.084 7.006 4.539 0.596 

AdaBoost 48.092 6.935 4.273 0.604 

 

Modeling of the proposed model 

In this work, the stacking ensemble was developed on the basis 

of a set of heterogeneous machine learning algorithms: 

 Random Forest; 

 AdaBoost; 

 Gradient Boosting; 

 Neural Network. 

Experimental evaluation of their work showed that they are 

adequate models for solving the problem of predicting the 

coercivity of Sm-Co alloys based on the collected data set. 

Three of them are ensemble methods, two of which are based 

on the boosting approach. In addition, an element of the 

stacking model is also a multilayer perceptron. 

Various machine learning methods can be used as a meta-

algorithm. However, logistic regression (for classification task) 

or ridge regression (for prediction task) are the most commonly 

used methods). Since the Stacking widget in Orange by default 

involves the use of the latter, we decided to focus on it. 

Flowchart of the proposed ensemble model using Orange tools 

is presented in Fig. 4. 

 

 
Fig. 4 Flowchart of the proposed stacking model for Sm-Co 

alloys coercivity prediction 

 

The results of the developed stacking model for predicting the 

coercivity of Sm-Co alloys based on (1) - (4) are summarized 

in Table 2. 

 
Table 2 Prediction results using a stacking model 

Proposed ensemble 

model 

Performance indicators 

MSE RMSE MAE R
2 

Proposed model 44.223 6.650 4.201 0.636 

 
As can be seen from Table 2, the proposed approach provides 

high accuracy. 

 
Comparison and discussion 

To confirm the effectiveness of the proposed model, we 

compared the results of its work with the results of existing 

methods. In particular, the comparison was made using basic 

regressors that form the proposed ensemble based on (1) and 

(4). SVR, SGD, Linear regression, and Tree algorithms were 

not taken into account. This is because the value of the indica-

tor (4) for these methods is lower than 0.5. The comparison 

results are summarized in Fig. 5 and Fig. 6. 

 
Fig. 5 MSE values for the proposed ensemble and its single 

components 

 

As shown from Fig. 5 and Fig. 6, the multilayer perceptron 

demonstrates the lowest performance accuracy compared to 

other ensemble members. The Random Forest method, despite 

the optimal value of the number of trees, does not exceed the 

results of algorithms based on boosting. AdaBoost and Gradi-

ent Boosting demonstrate minor errors compared to all other 

components of the ensemble. However, the highest accuracy in 

all four performance indicators was obtained using the devel-
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oped ensemble. The results of four known machine learning 

methods were compared using Ridge Regression. 

 
Fig. 6 R2 values for the proposed ensemble and its single 

components 
 
The proposed ensemble scheme showed a significant increase 

in the prediction accuracy of the magnetic properties of alloys 

of the Sm-Co system on the example of coercivity. It allows us 

to use it when solving applied problems of materials science. 

 

CONCLUSION 
 
The development of ML-based methods for predicting the 

properties of engineering materials is a critical task for modern 

materials science. Such an approach allows using of computer 

modeling instead of protracted, expensive, and resource-

consuming experimental studies. The properties of materials 

are determined by many factors, which are characterized by 

complex nonlinear relations that have their own features for 

each system. It requires an individual approach to developing 

the ML model, which provides the best accuracy in each case. 

In this article, based on the collected data set, an experimental 

comparison of eight existing machine learning methods was 

performed when solving the problem of predicting the coercivi-

ty of Sm-Co alloys. Based on the collected data set, an experi-

mental comparison of eight existing machine learning methods 

was performed when solving the problem of predicting the 

coercivity of Sm-Co alloys. The accuracy of their work was 

estimated using MSE, RMSE, MAE, and R2 indicators. This 

modeling aimed to select the optimal machine learning method 

based on the proposed criterion for building an ensemble 

model. This approach should provide a significant increase in 

the accuracy of solving the assigned task. 

The authors built a stacking ensemble model using heterogene-

ous elements. Neural Networks, AdaBoost, Gradient Boosting, 

and Random Forest algorithm were chosen as components of 

the ensemble. This choice is due to the high value of the 

coefficient of determination provided by the selected method. 

The stacking ensemble was modeled using the Orange data 

analysis and visualization software. Experimental studies have 

shown a significant increase in the accuracy of the proposed 

scheme compared with single-based algorithms forming it and 

other machine learning methods (SVR, SGD, Linear regres-

sion, and Tree). It makes it possible to use this model when 

solving applied problems of materials science. 

 

REFERENCES 

1. O. Gutfleisch et al.: Advanced Materials, 23(7), 2011, 821-

842. https://doi.org/10.1002/adma.201002180. 

2. M.C. Bonfante, J.P. Raspini, I.B. Fernandes, S. Fernandes, 

L.M.S. Campos, O.E. Alarcon: Renewable and Sustainable 

Energy Reviews, 137, 2021, 110616. 

https://doi.org/10.1016/j.rser.2020.110616. 

3. E.F. Kneller, R. Hawig: IEEE Transactions on Magnetics, 

27(4), 1991, 3588-3600. https://doi.org/10.1109/20.10293. 

4. A. Kirchner, W. Grunberger, O. Gutfleisch, V. Neu, K-H. 

Muller, L. Schultz: Journal of Physics D: Applied Physics, 

31(14), 1998, 1660-1666. https://doi.org/10.1088/0022-

3727/31/14/008. 

5. І.І. Bulyk: Materials Science, 54(6), 2019, 761-775. 

https://doi.org/10.1007/s11003-019-00262-7. 

6. I. I. Bulyk, A. M. Trostyanchyn: Fiziko-Khimicheskaya 

Mekhanika Materialov, 39(4), 2003, 77-83. 

7. Y. Liu, T. Zhao, W. Ju, S. Shi: Journal of Materiomics, 3(3), 

2017, 159-177. https://doi.org/10.1016/j.jmat.2017.08.002. 

8. Y. Juan, Y. Dai, Y. Yang, J. Zhang: Journal of Materials 

Science and Technology, 79, 2021, 178-190. 

https://doi.org/10.1016/j.jmst.2020.12.010. 

9. S.P. Ong: Computational Materials Science, 161, 2019, 143-

150. https://doi.org/10.1016/j.commatsci.2019.01.013. 

10. Y. Liu, O.C. Esan, Z. Pan, L.An: Energy and AI, 3, 2021, 

100049. https://doi.org/10.1016/j.egyai.2021.100049. 

11. I. Izonin, A. Trostianchyn, Z. Duriagina, R. Tkachenko, T. 

Tepla, N. Lotoshynska: International Journal of Intelligent 

Systems and Applications, 10(9), 2018, 40-47. 

https://doi.org/10.5815/ijisa.2018.09.05. 

12. R. Tkachenko, Z. Duriagina, I. Lemishka, Izonin I., A. 

Trostianchyn: Eastern-European Journal of Enterprise Tech-

nologies, 3(12), 2018, P. 23-31. https://doi.org/10.15587/1729-

4061.2018.134319. 

13. X. Zhao, H. Huanga, C. Wen, Y. Su, P. Qian: Computa-

tional Materials Science, 176, 2020, 109521. 

https://doi.org/10.1016/j.commatsci.2020.109521. 

14. Y. Wang et al.: Acta Materialia, 194(1), 2020, P. 144-155. 

https://doi.org/10.1016/j.actamat.2020.05.006. 

15. A. S. Lileev: Metal Science and Heat Treatment, 62 (7-8), 

2020, 508-512. https://doi.org/10.1007/s11041-020-00593-2. 

16. Y. Nishida, M. Endo, S. Sakurada: Journal of Magnetism 

and Magnetic Materials, 324(12), 2012, 1948–1953. 

https://doi.org/10.1016/j.jmmm.2012.01.027. 

17. A. S. Lileev: Metal Science and Heat Treatment, 58, 2017, 

581-586. https://doi.org/10.1007/s11041-017-0059-3. 

18. F. Mao, H. Lu, D. Liu, K. Guo, F. Tang, X. Song: Journal 

of Alloys and Compounds, 810, 2019, 151888. 

https://doi.org/10.1016/j.jallcom.2019.151888. 

19. A.J Cohen, P. Mori-Sánchez, W. Yang: Chemical Reviews, 

112(1), 2012, 289-320. https://doi.org/10.1021/cr200107z. 

20. G. Kresse, J. Hafner: Physical Review B, 49, 1994, 14251-

14269. https://doi.org/10.1103/PhysRevB.49.14251. 

21. A. Stukowski: Modelling and Simulation in Materials 

Science and Engineering, 18(1), 2010, 015012. 

https://doi.org/10.1088/0965-0393/18/1/015012.  

22. L. Chen: Annual Review of Materials Research, 32, 2002, 

113-140. 

https://doi.org/10.1146/annurev.matsci.32.112001.132041. 

23. R. Jacobs et al.: Computational Materials Science, 176, 

2020, 109544. 

https://doi.org/10.1016/j.commatsci.2020.109544. 

24. P. Saravanan, R. Gopalan, R. Priya, P. Ghosal, V. Chandra-

sekaran: Journal of Alloys and Compounds, 477, 2009, 322–

327. https://doi.org/10.1016/j.jallcom.2008.09.211. 

25. Y. Li, X.L. Zhang, R. Qiu, Y.S. Kang: Colloids and Sur-

faces A: Physicochemical and Engineering Aspects, 313-314, 

2008, 621–624. https://doi.org/10.1016/j.colsurfa.2007.04.150 

26. G.S. Chaubey, N. Poudyal, Y. Liu, C. Rong, J.P. Liu: 

Journal of Alloys and Compounds, 509, 2011, 2132–2136. 

https://doi.org/10.1016/j.jallcom.2010.10.164. 

27. N.V. Rama Rao et al.: Journal of Magnetism and Magnetic 

Materials, 312(2), 2007, 252-257. 

https://doi.org/10.1016/j.jmmm.2006.10.057. 

28. P. Konieczny, S.M. Dubiel: Intermetallics, 132, 20211, 

107134. https://doi.org/10.1016/j.intermet.2021.107134. 

0,542

0,591

0,596

0,604

0,636

0,48 0,5 0,52 0,54 0,56 0,58 0,6 0,62 0,64 0,66

Neural Network

Random Forest

Gradient Boosting

AdaBoost

Proposed model

R2

https://doi.org/10.1002/adma.201002180
https://doi.org/10.1016/j.rser.2020.110616
https://doi.org/10.1109/20.10293
https://doi.org/10.1088/0022-3727/31/14/008
https://doi.org/10.1088/0022-3727/31/14/008
https://doi.org/10.1007/s11003-019-00262-7
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.jmst.2020.12.010
https://doi.org/10.1016/j.commatsci.2019.01.013
https://doi.org/10.1016/j.egyai.2021.100049
https://doi.org/10.5815/ijisa.2018.09.05
https://doi.org/10.15587/1729-4061.2018.134319
https://doi.org/10.15587/1729-4061.2018.134319
https://doi.org/10.1016/j.commatsci.2020.109521
https://doi.org/10.1016/j.actamat.2020.05.006
https://doi.org/10.1007/s11041-020-00593-2
https://doi.org/10.1016/j.jmmm.2012.01.027
https://doi.org/10.1007/s11041-017-0059-3
https://doi.org/10.1016/j.jallcom.2019.151888
https://doi.org/10.1021/cr200107z
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1146/annurev.matsci.32.112001.132041
https://doi.org/10.1016/j.commatsci.2020.109544
https://doi.org/10.1016/j.jallcom.2008.09.211
https://doi.org/10.1016/j.colsurfa.2007.04.150
https://doi.org/10.1016/j.jallcom.2010.10.164
https://doi.org/10.1016/j.jmmm.2006.10.057
https://doi.org/10.1016/j.intermet.2021.107134


A. Trostianchyn et al. in Acta Metallurgica Slovaca 

  

 DOI: 10.36547/ams.27.4.1173  201 

29. H. Tang, J. Zhou, D.J. Sellmyer: Journal of Applied 

Physics, 91(10), 2002, 8162-8164. 

https://doi.org/10.1063/1.1447509. 

30. J. Zhou, R. Skomski, D.J. Sellmyer: Journal of Applied 

Physics, 93(10), 2003, 6495-6497. 

https://doi.org/10.1063/1.1558587. 

31. S. Li et al.: Journal of Materials Science & Technology, 88, 

2021, 183–188. https://doi.org/10.1016/j.jmst.2021.01.083. 

32. A. Bajorek, P. Łopadczak, K. Prusik, M. Zubko: Materials, 

14(4), 2021, 805. https://doi.org/10.3390/ma14040805. 

33. S. An, X. Li, W. Li, F. Ren, P. Xu: Materials Letters, 284, 

2021, 128965. https://doi.org/10.1016/j.matlet.2020.128965. 

34. Y.Q. Yang, D.T. Zhang, Y.Q. Li, H.G. Zhang, W.Q. Liu: 
IEEE Transactions on Magnetics, 57(2), 2021, 1-5, 

https://doi.org/10.1109/TMAG.2020.3012188. 

35. C.Xu et al.: Journal of Magnetism and Magnetic Materials, 

519, 2021, 167477. 

https://doi.org/10.1016/j.jmmm.2020.167477. 

36. Z. Shang et al.: Journal of Rare Earths, 39(2), 2021, 160-

166. https://doi.org/10.1016/j.jre.2020.03.002. 

37. S. Wang et al.: Journal of Magnetism and Magnetic Mate-

rials, 514, 2020, 167288. 

https://doi.org/10.1016/j.jmmm.2020.167288. 

38. X. Song, Y. Liu, A. Xiao, T. Yuan, T. Ma: Materials 

Characterization, 169, 2020, 110575. 

https://doi.org/10.1016/j.matchar.2020.110575. 

39. S. Wang et al.: Journal of Rare Earths, 38(11), 2020, 1224-

1230. https://doi.org/10.1016/j.jre.2019.11.009. 

40. T. Yuan et al.: Journal of Materials Science & Technology, 

53, 2020, 73–81. https://doi.org/10.1016/j.jmst.2020.04.018. 

41. W. Sun et al.: IEEE Transactions on Magnetics, 56(6), 

2020, 2100705. https://doi.org/10.1109/TMAG.2020.2989099 

42. A.G. Popov et al.: Journal of Alloys and Compounds, 820, 

2020, 153103. https://doi.org/10.1016/j.jallcom.2019.153103. 

43. X. Xu, Y. Li, Z. Ma, M. Yue, D. Zhang: Scripta Materialia, 

178, 2020, 34-38. 

https://doi.org/10.1016/j.scriptamat.2019.11.003. 

44. M. Najarzadegan, F. Karimzadeh, H. R. Salimijazi, S. 

Adhami: Journal of Superconductivity and Novel Magnetism, 

33, 2020, 783-793. https://doi.org/10.1007/s10948-019-05257-

8. 

45. J. Fan, Q. Zheng, R. Bao, J. Yi, Juan Du: Journal of Mate-

rials Science & Technology, 37, 2020, 181-184. 

https://doi.org/10.1016/j.jmst.2019.04.041. 

46. Y. Hua et al.: EEE Transactions on Magnetics, 56(1), 2020, 

2100104. https://doi.org/10.1109/TMAG.2019.2946239 

47. G. Wang et al.: IEEE Transactions on Magnetics, 56(1), 

2020, 100205. https://doi.org/10.1109/TMAG.2019.2947226. 

48. Z. F. Shang et al.: AIP Advances, 9(12), 2019, 125142. 

https://doi.org/10.1063/1.5129804. 

49. E.V. Khudina, M.V. Zheleznyi, I.O. Minkova, P.S. Rybin, 

V.P. Menushenkov: Journal of Physics: Conference Series, 

1389, 2019, 012119. https://doi.org/10.1088/1742-

6596/1389/1/012119. 

50. G. Yan et al.: Journal of Magnetism and Magnetic Materi-

als, 489, 2019, 165459. 

https://doi.org/10.1016/j.jmmm.2019.165459. 

51. A.G. Popov, O.A. Golovnia, A.V. Protasov, V.S. Gaviko, 

D.A. Kolodkin, R. Gopalan: Journal of Rare Earths, 37, 2019, 

1059-1065. https://doi.org/10.1016/j.jre.2019.04.009. 

52. S. Akhtar, M. Khan, A.N. Khan, S.H.I. Jaffery: Materials 

Transactions, 61(11), 2020, 2195-2200. 

https://doi.org/10.2320/matertrans.MT-M2019350. 

53. G. Yan et al.: Journal of Alloys and Compounds, 785, 

2019, 429-435. https://doi.org/10.1016/j.jallcom.2019.01.217. 

54. N.A. Dormidontov, G.S. Burkhanov, N.B. Kolchugina, 

A.G. Dormidontov, Yu.V. Milov: Inorganic Materials: Applied 

Research, 10(3), 2019, 662–665. 

https://doi.org/10.1134/S2075113319030092. 

55. Y. Ma et al.: Journal of Materials Science, 54, 2019, 2658-

2667. https://doi.org/10.1007/s10853-018-2989-6. 

56. H. Tang, M.A.H. Mamakhel, M. Christensen: Scientific 

Reports, 11, 2021, 4682. https://doi.org/10.1038/s41598-021-

83826-5. 

57. J. Chen, F. Wang, F. Wang, F. Meng, J. Zhang: Journal of 

Magnetism and Magnetic Materials, 521, 2021, 167534. 

https://doi.org/10.1016/j.jmmm.2020.167534. 

58. YH. Xu, Q. Jiang, K. Li, ZH. Ma: Rare Metals, 40, 2021, 

575-581. https://doi.org/10.1007/s12598-020-01516-z. 

59. A. Chakraborty, R. Hirian, G. Kapun, V. Pop: Nanomateri-

als, 10(7), 2020, 1308. https://doi.org/10.3390/nano10071308 

60. H. Tang, M.A.H. Mamakhel, M. Christensen: Journal of 

Materials Chemistry C, 8, 2020, 109-2116. 

https://doi.org/10.1039/C9TC06137A. 

61. R. Hirian, B.V. Neamtu, A. Ferenczi, O. Isnard, I. Chicinas, 
V. POP: Romanian Journal of Physics, 65, 2020, 603.  
62. H. Li et al.: Journal of Alloys and Compounds, 810, 2019, 
151890. https://doi.org/10.1016/j.jallcom.2019.151890. 
63. D. Ying et al.: Nanoscale, 11(36), 2019, 16962-16967. 
https://doi.org/10.1039/C9NR06653E. 
64. S. An, W. Li, K. Song, T. Zhang, C. Jiang: Journal of 
Magnetism and Magnetic Materials, 469, 2019, 113-118. 
https://doi.org/10.1016/j.jmmm.2018.08.041. 
65. J. Liang et al.: IEEE Transactions on Magnetics, 54(11), 
2018, 2102604, https://doi.org/10.1109/TMAG.2018.2848281. 
66. M. Yue, C. Li, Q. Wu, Z. Ma, H. Xu, S. Palaka: Chemical 
Engineering Journal, 343, 2018, 1-7. 
https://doi.org/10.1016/j.cej.2018.02.060. 
67. A. Eldosouky et al.: IEEE Magnetics Letters, 9, 2018, 
5503504, https://doi.org/10.1109/LMAG.2018.2831174. 
68. C. Ma: Chemical Physics Letters, 696, 2018, 31-35. 
https://doi.org/10.1016/j.cplett.2018.02.042. 
69. Q. Li, J. Guo, L. Sha: Materials Research Express, 5, 2018, 
035019. https://doi.org/10.1088/2053-1591/aaaff6. 

70. T. Saito, D. Nishio-Hamane: Journal of Alloys and Com-

pounds, 735, 2018, 218-223. 

https://doi.org/10.1016/j.jallcom.2017.11.060. 

71. L. Lv et al.: Acta Metallurgica Sinica (English Letters), 

31(2), 2018, 143-147. https://doi.org/10.1007/s40195-017-

0631-2. 

72. B. Shen et al.: Nano Letters, 17(9), 2017, 5695-5698. 

https://doi.org/10.1021/acs.nanolett.7b02593. 

73. X. Xu, H. Zhang, T. Wang, Y. Li, D. Zhang, M. Yue: 

Journal of Alloys and Compounds, 699, 2017, 262-267. 

http://dx.doi.org/10.1016/j.jallcom.2016.12.302. 

74. Y. Shen, S. Leontsev, A.O. Sheets, J.C. Horwath, Z. 

Turgut: AIP Advances, 6, 2016, 056005. 

https://doi.org/10.1063/1.4943015. 

75. Q. Ma: Journal of Magnetics, 21(1), 2016, 25-28. 

https://doi.org/10.4283/JMAG.2016.21.1.025. 

76. N. Poudyal, K. Elkins, K. Gandha, J. Ping Liu: IEEE 

Transactions on Magnetics, 51(11), 2015, 2104704, 

https://doi.org/10.1109/TMAG.2015.2453120. 

77. N. Yu, M. Pan, P. Zhang, H. Ge, Q. Wu: Journal of Mag-

netism and Magnetic Materials, 378, 2015, 107-111. 

http://dx.doi.org/10.1016/j.jmmm.2014.09.079. 

78. N. Poudyal, K. Gandha, K. Elkins, J.P. Liu: AIMS Materi-

als Science, 2(3), 2015, 294-302. 

http://dx.doi.org/10.3934/matersci.2015.3.294. 

79. M. Musa et al.: Intermetallics, 129, 2021, 107049. 

https://doi.org/10.1016/j.intermet.2020.107049. 

80. Y. Hua et al.: Journal of Magnetism and Magnetic Materi-

als, 518, 2021, 167415. 

https://doi.org/10.1016/j.jmmm.2020.167415. 

81. DT. Zhang, RC. Zhu, M. Yue, WQ. Liu: Rare Metals, 39, 

2020, 1295-1299. https://doi.org/10.1007/s12598-018-01198-8. 

https://doi.org/10.1063/1.1447509
https://doi.org/10.1063/1.1558587
https://doi.org/10.1016/j.jmst.2021.01.083
https://doi.org/10.3390/ma14040805
https://doi.org/10.1016/j.matlet.2020.128965
https://doi.org/10.1109/TMAG.2020.3012188
https://doi.org/10.1016/j.jmmm.2020.167477
https://doi.org/10.1016/j.jre.2020.03.002
https://doi.org/10.1016/j.jmmm.2020.167288
https://doi.org/10.1016/j.matchar.2020.110575
https://doi.org/10.1016/j.jre.2019.11.009
https://doi.org/10.1016/j.jmst.2020.04.018
https://doi.org/10.1109/TMAG.2020.2989099
https://doi.org/10.1016/j.jallcom.2019.153103
https://doi.org/10.1016/j.scriptamat.2019.11.003
https://doi.org/10.1007/s10948-019-05257-8
https://doi.org/10.1007/s10948-019-05257-8
https://doi.org/10.1016/j.jmst.2019.04.041
https://doi.org/10.1109/TMAG.2019.2946239
https://doi.org/10.1109/TMAG.2019.2947226
https://doi.org/10.1063/1.5129804
https://doi.org/10.1088/1742-6596/1389/1/012119
https://doi.org/10.1088/1742-6596/1389/1/012119
https://doi.org/10.1016/j.jmmm.2019.165459
https://doi.org/10.1016/j.jre.2019.04.009
https://doi.org/10.2320/matertrans.MT-M2019350
https://doi.org/10.1016/j.jallcom.2019.01.217
https://doi.org/10.1134/S2075113319030092
https://doi.org/10.1007/s10853-018-2989-6
https://doi.org/10.1038/s41598-021-83826-5
https://doi.org/10.1038/s41598-021-83826-5
https://doi.org/10.1016/j.jmmm.2020.167534
https://doi.org/10.1007/s12598-020-01516-z
https://doi.org/10.3390/nano10071308
https://doi.org/10.1039/C9TC06137A
https://doi.org/10.1016/j.jallcom.2019.151890
https://doi.org/10.1039/C9NR06653E
https://doi.org/10.1016/j.jmmm.2018.08.041
https://doi.org/10.1109/TMAG.2018.2848281
https://doi.org/10.1016/j.cej.2018.02.060
https://doi.org/10.1109/LMAG.2018.2831174
https://doi.org/10.1016/j.cplett.2018.02.042
https://doi.org/10.1088/2053-1591/aaaff6
https://doi.org/10.1016/j.jallcom.2017.11.060
https://doi.org/10.1007/s40195-017-0631-2
https://doi.org/10.1007/s40195-017-0631-2
https://doi.org/10.1021/acs.nanolett.7b02593
http://dx.doi.org/10.1016/j.jallcom.2016.12.302
https://doi.org/10.1063/1.4943015
https://doi.org/10.4283/JMAG.2016.21.1.025
https://doi.org/10.1109/TMAG.2015.2453120
http://dx.doi.org/10.1016/j.jmmm.2014.09.079
http://dx.doi.org/10.3934/matersci.2015.3.294
https://doi.org/10.1016/j.intermet.2020.107049
https://doi.org/10.1016/j.jmmm.2020.167415
https://doi.org/10.1007/s12598-018-01198-8


A. Trostianchyn et al. in Acta Metallurgica Slovaca 

  

 DOI: 10.36547/ams.27.4.1173  202 

82. W. Jia, X. Zhou, A. Xiao, X. Song, T. Yuan, T. Ma: 

Journal of Materials Science, 55, 2020, 13258-13269. 

https://doi.org/10.1007/s10853-020-04889-9. 

83. Z. Ma, T. Zhanga, C. Jiang: RSC Advances, 5, 2015, 

89128-89132. https://doi.org/10.1039/c5ra15079e. 

84. J. Nie et al.: Journal of Magnetism and Magnetic Materials, 

347, 2013, 116-123. 

http://dx.doi.org/10.1016/j.jmmm.2013.06.047. 

85. S. Leontsev et al.: IEEE Transactions on Magnetics, 49(7), 

2013. http://dx.doi.org/10.1109/TMAG.2013.2250926. 

86. B.K. Rai, S.R. Mishra: Journal of Magnetism and Magnetic 

Materials, 344, 2013, 211-216. 

http://dx.doi.org/10.1016/j.jmmm.2013.06.006. 

87. L. Zheng, B. Cui, G.C. Hadjipanayis: Acta Materialia, 59, 
2011, 6772-6782. 
https://doi.org/10.1016/j.actamat.2011.07.035. 
88. S.J. Knutson, Y.Shen, J.C. Horwath, P. Barnes, C.H. Chen: 
Journal of Applied Physics, 109, 2011, 07A762. 
https://doi.org/10.1063/1.3556922. 
89. B.Z. Cui, L.Y. Zheng, D. Waryoba, M. Marinescu, G.C. 
Hadjipanayis: Journal of Applied Physics, 109, 2011, 07A728. 
http://dx.doi.org/10.1063/1.3562447. 
90. M. Yue et al.: Journal of Applied Physics, 109, 2011, 
07A711. https://doi.org/10.1063/1.3553933. 
91. L. Zheng, A.M. Gabay, W. Li, B. Cui, G.C. Hadjipanayis: 
Journal of Applied Physics, 109, 2011, 07A721. 
https://doi.org/10.1063/1.3561443. 
92. C. Rong, Y. Zhang, M.J. Kramer, J.P. Liu: Physics Letters 
A, 375(10), 2011, 1329-1332. 
https://doi.org/10.1016/j.physleta.2011.02.006. 
93. B.Z. Cui, W.F. Li, G.C. Hadjipanayis: Acta Materialia, 59, 
2011, 563-571. https://doi.org/10.1016/j.actamat.2010.09.060. 
94. L. Zheng, B. Cui, N.G. Akdogan, W. Li, G.C. 
Hadjipanayis: Journal of Alloys and Compounds, 504, 2010, 
391-394. https://doi.org/10.1016/j.jallcom.2010.05.123. 
95. B.Z. Cui, A.M. Gabay, W.F. Li, M. Marinescu, J.F. Liu, 
G.C. Hadjipanayis: Journal of Applied Physics, 107, 2010, 
09A721. https://doi.org/10.1063/1.3339775. 

96. D.T. Zhang et al.: Journal of Applied Physics, 107, 2010, 

09A701. https://doi.org/10.1063/1.3334458. 

97. P. Saravanan, M. Premkumar, A.K. Singh, R. Gopalan, V. 

Chandrasekaran: Journal of Alloys and Compounds, 480, 2009, 

645-649. https://doi.org/10.1016/j.jallcom.2009.01.129. 

98. T.B. Serbenyuk et al.: Journal of Superhard Materials, 

40(1), 2018, 8-15. 

https://doi.org/10.3103/S1063457618010021. 

99. K. Suresh et al.: Journal of Alloys and Compounds, 463, 

2008, 73-77. https://doi.org/10.1016/j.jallcom.2007.09.062. 

100. I.I. Bulyk et al.: Journal of Alloys and Compounds, 866, 

2021, 158272. https://doi.org/10.1016/j.jallcom.2020.158272. 

101. Y. Zhuge et al.: Journal of Rare Earths, 39(3), 2021, 312-

316. https://doi.org/10.1016/j.jre.2020.02.015. 

102. A. Trostianchyn et al.: Datasheet of Sm-Co alloy magnetic 

properties depending on chemical and phase composition, 

sample state, the existence of crystallographic orientation, and 

microstructure, 2021. 

https://www.researchgate.net/publication/355598036_Sm-

Co_alloys_magnetic_properties_dataset. 

103. J. Demšar et al.: Journal of Machine Learning Research, 

14, 2013, 2349-2353.  

 
 

https://doi.org/10.1007/s10853-020-04889-9
https://doi.org/10.1039/c5ra15079e
http://dx.doi.org/10.1016/j.jmmm.2013.06.047
http://dx.doi.org/10.1109/TMAG.2013.2250926
http://dx.doi.org/10.1016/j.jmmm.2013.06.006
https://doi.org/10.1016/j.actamat.2011.07.035
https://doi.org/10.1063/1.3556922
http://dx.doi.org/10.1063/1.3562447
https://doi.org/10.1063/1.3553933
https://doi.org/10.1063/1.3561443
https://doi.org/10.1016/j.physleta.2011.02.006
https://doi.org/10.1016/j.actamat.2010.09.060
https://doi.org/10.1016/j.jallcom.2010.05.123
https://doi.org/10.1063/1.3339775
https://doi.org/10.1063/1.3334458
https://doi.org/10.1016/j.jallcom.2009.01.129
https://doi.org/10.3103/S1063457618010021
https://doi.org/10.1016/j.jallcom.2007.09.062
https://doi.org/10.1016/j.jallcom.2020.158272
https://doi.org/10.1016/j.jre.2020.02.015
https://www.researchgate.net/publication/355598036_Sm-Co_alloys_magnetic_properties_dataset
https://www.researchgate.net/publication/355598036_Sm-Co_alloys_magnetic_properties_dataset

