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Abstract  

Differential equation describing stress state in the rolling gap was derived first time by Karman. 

Since the solution of the differential equation is not easy many authors try to simplify of entry 

conditions. Some authors have replaced the circular arch of the contact zone of rolls by straight 

line, polygonal curve or parabola for simplifications of solution. These simplifications allow to 

obtain analytical solution differential equation but with acceptation some inaccuracy of the final 

results.  Another solution of the differential equation was focused on the substitution of the 

analytical solution by the numerical solution, but should also expect some uncertainty of the 

final results. A more sophisticated solution was given by Gubkin is based on defining a constant 

shear stress and the approximation of the circular arch through the straight line. Gubkin for 

analytic solution of differential equation used one constant that includes the friction coefficient 

and second constant which is including the geometry of the rolling gap. The contribution of this 

paper is an original analytical solution of the differential equation based on the description of the 

contact arc by the equation of a circle. The proposed solution for the calculation of normal stress 

distribution is described by two constants. The first constant is describing the geometry of the 

rolling gap and the second describes friction coefficient. The final solution of differential 

equation is sum of two independent functions involving the shear stress as a variable value. The 

proposed solution does not consider with material work hardening during processing.      
 

Keywords: theory of rolling, constant shear stress, differential equations, normal stress, relative 

stress 
 

 

1 Introduction 

The process of lengthwise rolling can be described as the action of active forces onto rolling 

direction with the consideration of equilibrium conditions for the element. Theory of lengthwise 

rolling process was presented for the first time by von Karman [1] in 1925. This theory 

described the equilibrium conditions of the element in the rolling gap by two-dimensional 

differential equation. The geometrical characterization of the differential element is represented 

in Fig. 1.  

The horizontal projection of all the forces acting on the element must be in equilibrium state. On 

the base of the sum of the horizontal active forces was derived differential equation of contact 

stresses for two – dimensional deformation in the consideration of the forward and the backward 

slip zones. The procedure for derivation of the two-dimensional differential equation can be 

found in the  classical  literature  of  rolling  Počta [2], Avitzur [3], Hensel  and  Spittel  [4]  and 
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Fig. 1 Determination of geometric relationships 

 
 

Mielnik [5]. More recent literature are the publications Hajduk and Konvičný [6], Kollerová et al  

[7] and Pernis [8]. The stress state in rolling gap describes differential equation: 
   

0
y

τ

dx

dy

y

σ

dx

dσ



 xnx 

              (1.) 

 

where:  - plus sign (+) is for backward slip zone  

 - minus sign () is for forward slip zone 

- n - normal contact stress on rolls 

-  - shear stress between rolls and rolling material  

- x, y - coordinates of the cylinder touching the rolled material 

The following Tresca condition of plasticity is used in eq.(1): 
 

aσ xn                 (2.) 

 

where:  - y  n – maximal principal stress (vertical direction) 

 - x – minimal principal stress (horizontal direction) 

- a - stress which represents real deformation resistance [9–12] 

The shear stress can be determined from on the base two following assumptions: 

- the shear stress is varied and also is proportional to the normal contact stress on rolls: 
 

nf                   (3.) 

 

-  the shear stress is constant and also is proportional to the real deformation resistance: 

 

af                   (4.) 

 

Substituting eq. (2) and eq.(4)  to the eq.(1) is obtained the following form of two-dimensional 

differential equation with a single variable that is stress: 
 

0 f
y

σ

dx
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y

σ

dx

dσ aan               (5.) 
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The geometry of the roll which is in contact with the rolling material can be described by the 

coordinates x and y wherein the variable y is a function of the coordinate x. The eq.(5) is 

characterized by two constants: actual deformation resistance and friction coefficient. Assuming 

that the material during the rolling does not exhibit work hardening it can be the differential 

equation divided by the actual deformation resistance a and used new variable which is relative 

normal contact stress nσ : 
 

a

n
n




                  (6.) 

 

where:  -    – is a sigma function  

Substituting eq. (6) to the eq.(5) is obtained formula in which is eliminating the actual 

deformation resistance a: 
 

0f
dx

dy

y

1

dx

σd n 







                (7.) 

 

Using this equation (eq.(7)) the solution becomes independent of the properties of the rolled 

material. 
 
 

2 Solution of differential equation according to Gubkin  

The analytical solutions of eq.(1) are based on certain assumptions and mainly simplifications. 

Gubkin [13] approximated the circular arc with a parabola and also by a straight line as shown in 

Fig. 2.   
 

22

1h
x

l

h
y

d




                 (8.) 

 

dl

h

dx

dy

2


                 (9.) 

 

 
 

Fig. 2 The Contact Arc according to Gubkin 
 
 

Substituting eq. (9) to the eq.(7) is obtained following form: 
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

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














y

dy
f

l

h

h

l

σd

dd

n              (10.) 

  

and after simplification:  
 

 
y

dy
mσd n  1              (11.) 

where:  
h

l
f2m d


              (12.) 

 

By integration of the eq.(11) will be obtained the inscription for the backward slip zone: 
 

  BnB Cym  ln1              (13.) 

 

and for the forward slip zone: 
 

  FnF Cym  ln1              (14.) 

 

The integration constant CB for the backward slip zone and CF for the forward slip zone were 

specified from the boundary conditions of the material input and exit into resp. from rolling gap. 

It is assumed that the lengthwise rolling process is realized without forward and backward 

stretching forces, without material hardening during plastic deformation and without roll 

flattening. The vertical coordinates of points A and B according to Fig. 1 are as follows:  point 

A: y=h1/2, point B: y=h0/2 and horizontal stress in these points is x=0. To apply an σσ   must 

be valid a condition of plasticity. From eq.(13) is determined integration constant for the 

backward slip zone where is valid:   1σnB   a  y=h0/2: 
 

 
2

ln11 0h
mCB               (15.) 

 

Similarly from eq.(14) is determined integration constant for the forward slip zone where is 

valid: 1σnF   a  y=h1/2   
 

 
2

ln11 1h
mCF               (16.) 

 

The equation describing of the distribution of the relative normal contact stress for the forward 

slip zone can be written as follows: 
 

 
0

2
ln11

h

y
mnB               (17.) 

 

and the equation for the calculation of the relative normal contact stress for the backward slip 

zone can be written as follows:  
 

 
1

2
ln11

h

y
mnF               (18.) 
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The coordinate y is described by eq.(8). To calculate the relative normal contact stress the 

coordinate y is replaced by the relative coordinate x/ld.     
 
















dl

x

h

y
11

2

0

              (19.) 

 

or: 
 

dl

x

h

y









1
1

2

1

             (20.) 

 

Substituting eq. (19) to the eq.(17) is obtained the following form for the relative normal contact 

stress for the backward slip zone: 
 

 





























d
nB

l

x
11lnm11             (21.) 

 

Substituting eq. (20) to the eq.(18) is obtained the following form for the relative normal contact 

stress for the forward slip zone: 
 

  



















d
nF

l

x

1
1lnm11             (22.) 

 

The visualization of the rolling equation eq.(21) and eq.(22)  in depend on the relative 

coordinate x/ld and constant shear stress is given in Fig. 3. 
 

 
Fig. 3  The distribution of the relative normal contact stress in rolling gap at constant shear 

stress  

 
 

3 New solution of differential equation 

The following part will be represented the new analytical solution of eq.(1) with condition 

constant shear stress. The analytical solution of the eq.(1) is based on description of circular arch 

by equation of the circle as is showing in Fig. 4. 
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Fig. 4 The description of contact arc by the circle 

 
 

The new form of eq.(7) after modification will be: 
 

0
y

dx
f

y

dy
σd n              (23.) 

 

The solution of eq.(23) can be obtained by its integration [14-19]: 
 

 
y

dx
f

y

dy
σd n               (24.) 

 

While the left side of eq.(24) is simply integrated the right side consists from two integrals 

which can be described by the functions F1(x) a F2(x) and eq.(24) will take the following form: 
 

)()( 21 xFfxFCn               (25.) 

 

where C is integration constant. The function dependence y=f(x) in differential eq. (23) is 

representing of the equation of the circle: 
 

  22
0

2 Ryyx   ,    
2

1
0

h
Ry                                    (26., 27.) 

 

where:  - R  – the roll radius 

              - h1 – exit thickness of rolling material 

If variable y is separated from eq.(26) and is carried out the differentiation of the eq.(28) then is 

obtained the following formula:  
 

221

2
xR

h
Ry  ,     dx

xR

x
dy 




22
                 (28., 29.) 

 

The determination of ratio dy/y from eq.(28), eq.(29) and substituting to the function F1(x) is 

obtained:  


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



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


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
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

22221

22

1
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)(

R

x
mR

dx

R

x

R

x

dx

xR
h

R

xR

x

y

dy
xF        (30.) 
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where m is a constant comprising the following parameters:   
 

R

h
m

2
1 1               (31.) 

 

Simplification of eq.(30) can be obtained when a transformation from the rectangular coordinate 

system to polar coordinates is performed. From Fig. 5 is resulting the determination of the polar 

coordinate   of point  yx;K . 
 

 
Fig. 5 Definition of the position of point K[x; y] 

 
 

The transformation from Cartesian coordinates to polar with can be made as follows: 
 

sin
R

x
,   resp.    dRdx  cos                   (32., 33.) 

 

Substituting eq. (32) and eq.(33) to eq. (30) will obtained new formula which is labeled as 

function F1(m,) resulting from the transformation of Cartesian coordinates previously labeled 

as a function F1(x) into polar coordinates :  
 

 











 





 












 d

mmR

dR
mF

cos

sin

sin1

cos

sin1

sin
),(

22
1         (34.) 

 

To calculate the integral eq.(34) will be applied following substitution:  
  

cosmt ,      ddt  sin                                 (35., 36.) 

 

 



 coslnln

cos

sin
),(1 


  mt

t

dt
d

m
mF          (37.) 

        

Graphical visualization of eq.(37) is shown in Fig. 6. Function F1(m,) throughout the project 

space shall take negative values. 
 
 
 

The next step is definition of function F2( x) from eq.(25) as follows: 
 
















222

0

2

1

)(

R

x
m

R

dx

xRy

dx

y

dx
xF           (38.) 
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and their transformation from the Cartesian coordinates (F2(x)) into the polar coordinates (F2(m, 

)): 
  









 d

mm

d
mF 







  cos

cos

sin1

cos
),(

2
2 .          (39.) 

     

 
Fig. 6 Graphical visualization of function F1(m, ) 

 
 

The following substitutions are introduced for solution of the integral:  
 

ztg 
2


,    

2

2

1

1
cos

z

z




 ,       

21

2

z

dz
d


           (40.) 

 

Substituting eq. (40) to eq. (39) will obtained formula:  
 

   
dz

zaz

z

m
mF 






  22

2

2
1

1

1

2
),(  ,           (41.) 

 

where: 
1

1






m

m
a               (42.) 

 

Next procedure for solving the integral eq.(41) consists in its decomposition into partial 

fractions:  

 
















  222

1

1

11

2

1

2
),(

za

dz

a

a

z

dz

am
mF  .          (43.) 

 

and solution of eq.(43) will be as follows:   
 



















a

z
arctg

aa

a
zarctg

am
mF

1

1

1

1

2

1

2
),(2           (44.) 

 

Reversing the introduction of the constant a into the eq.(44) and the use of substitution from 

eq.(40) yields the formula:  
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



















 z

m

m
arctg

m

m
zarctgmF

1

1

1

2
2),(

2
2            (45.) 

 




 






















21

1

1

2
),(

2
2 tg

m

m
arctg

m

m
mF           (46.) 

 

Graphical visualization of eq.(46) is shown in Fig. 7. Function F2(m,) throughout the project 

space shall take positive values. 
 

 
Fig. 7  Graphical visualization of function F2(m, ) 

 
 

When the functions F1(m, ) and F2(m, ) are substituted into eq.(25) then receives the 

following formula: 

 

),(),( 21  mFfmFCn               (47.) 

 

and will be obtained analytical solution for the relative normal contact stress in complex form:   
 

 



































 




21

1

1

2
cosln

2
tg

m

m
arctg

m

m
fmCn          (48.) 

 

where:  C  – is an integration constant  

Equations describing the distribution of relative normal contact stress along rolling gap at 

constant shear stress will have the following forms: 

- for backward slip zone:  
 

 





















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



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
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
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1

1

2
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2
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m

m
arctg

m

m
fmCBnB         (49.) 

 

- for forward slip zone:  

 





















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

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
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
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Rolling process is realized without forward and backward stretching forces, without material 

hardening during plastic deformation and without roll flattening. According to Fig. 1 polar 

coordinate for point B is  and for point A is =0. In these points horizontal stress is x=0.  

In order to perform a condition of plasticity for these points must be valid an σσ  . The 

integration constant CB for the backward slip zone shell be determined from the condition 

1σnB   a and eq.(49)as follows: 

  

 



































 




21

1

1

2
cosln1

2
tg

m

m
arctg

m

m
fmCB         (51.) 

 

Also integration constant CF for the forward slip zone shell be determined from the condition 

1σnF   a and eq.(50)as follows:  
 

 1mln1CF               (52.) 

 

Substituting equations describing of the integration constants eq.(51) and eq.(52) into eq.(49) 

and eq.(50) will obtained the final analytical solutions for calculation of relative normal contact 

stress in backward and forward slip zones:  
 





































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













































 











21

1

1

2

cos

cos
ln

21

1

1

2
1

22
tg

m

m
arctg

m

m
f

m

m
tg

m

m
arctg

m

m
fnB

   (53.) 

 

















































 




21

1

1

2

1

cos
ln1

2
tg

m

m
arctg

m

m
f

m

m
nF         (54.) 

 

The eq.(53) and eq.(54) can be written in short form as sum of two functions:  
 

 ),m(Ff),m(F 21n               (55.) 

 

where:  F1(m,φ)  – is depend only on geometric constant m and polar coordinate φ 

             F2(m,φ) – is depend on geometric constant m , polar coordinate φ and friction 

coefficient f 
 

 
Fig. 8 The distribution of the relative normal contact stress in rolling gap with constant shear 

stress 
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Geometric visualization of eq.(53) and eq.(54) is presented in Fig. 8. The curves represent the 

development of the relative normal contact stress in rolling gap in the condition of constant 

shear stress in dependence to the relative coordinate x/ld.    

The parameters are the relative thickness deformation and friction coefficient (f=0,4). Maximal 

value of the relative normal contact stress in the rolling gap is observed at neutral point.  

Increasing of relative deformation of thickness has resulted in the growth of relative normal 

contact stress and shifting of neutral point in direction to point A i.e. towards to the exit plane of 

rolling gap. The presented solution is valid to the rolled material which does not working 

hardening during his processing.  
 
 

4 Conclusion 

The analytical solution differential equation describing stress state in the rolling gap with 

condition constant shear stress is given in this paper. The first analytical solution of the 

differential eq.(1) was mentioned by the author Gubkin using a simplified describtion  of the 

circular arch of the contact zone by the straight line and later by the parabola. A constant shear 

stress was used as further simplify the author. However these simplifications have impact to 

precision of the calculation of distribution of the normal stress in the rolling gap. The 

contribution of this paper is the new description of the circular arch of the contact zone by the 

equation of a circle. Approximation of the circular arch by the equation of a circle causes a 

problem to obtain analytical solution of differential eq.(1). A new analytical approach for 

solution of this case is based on the transformation from Cartesian coordinates (–x) to polar 

coordinates (– Description of distribution of the relative normal contact stress on rolls is 

represented by the sum of two independent functions 21n FfF  . The first function has a 

logarithmic form ),m(FF 11  and describes the geometry of the rolling gap and second 

function ),m(FF 22  describes shear stress between the rolls and the rolling material. The 

second function has character of the wrapping angle and is independent on friction coefficient. 

The new approach for solution of eq.(1) allows too obtained calculation for case when shear 

stress is not a constant. 
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Nomenclature 

n  – normal contact stress [MPa] 

n        – relative normal contact stress [–] 

nB       – relative normal contact stress (Backward slip zone) [–] 

nF       – relative normal contact stress (Forward slip zone) [–] 

          – sigma function (average relative normal contact stress) [–] 

           – shear stress [MPa]  

x , y  – principal stress (, ) [MPa] 

a         – actual resistance to deformation [MPa] 

x , y      – rectangular coordinates [m] 

R ,      – polar coordinates [m, rad] 

dx , dy  – coordinate differentials x and y [–] 

m         – constant differential equation [–] 

          – gripping angle [rad] 

n         – neutral angle [rad] 

ld          – length of contact arc [m] 

h0 , h1   – thickness before and after deformation [m] 

hn         – thickness in neutral section [m] 

hav        – average thickness [m] 

h        – absolute reduction [m] 

          – relative reduction [–] 

f           – friction coefficient [–] 

R          – radius of rollers [m] 

CB        – integration constant (Backward slip zone) [–] 

CF        – integration constant (Forward slip zone) [–] 


