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ABSTRACT  

This paper aims to solve the predicting magnetic properties task on the example of Sm-Co alloy using machine learning tools. In 

particular, the authors solved the Sm-Co alloys maximum energy product prediction task using the feature bagging technique. To 

implement this approach, we have chosen the Random Forest algorithm, which efficiently processes short datasets by reducing vari-

ance and, as a result, reducing the impact/avoidance of overfitting. Experimental modeling was based on a short set of data (190 

observations) collected by the authors with many independent attributes. As a result, it has been experimentally established that the 

studied machine learning method provides a high value of the Coefficient of determination (0.78) when solving Sm-Co alloy's maxi-

mum energy product prediction task. Furthermore, by comparing with other ensemble-based methods from different classes, the 

highest accuracy of the researched process is established based on several performance indicators. 
 

Keywords: Computational Material Science, machine learning, prediction model, small data processing, Sm-Co alloy, magnetic 

properties. 
 

 

INTRODUCTION 
 

A new approach to solving applied tasks in Material Science, 

namely Computational Material Science, is being intensively de-

veloped [1-3]. The use of various methods of computer model-

ing can be significantly shorter than the traditional methods for 

investigation. Also, it can reduce the cost and simplify both the 

process of creating new functional materials and improving the 

properties of existing ones [4, 5]. Furthermore, a vast arsenal of 

machine learning tools allows you to solve clustering, regres-

sion, and classification tasks successfully, predict the properties 

of materials, reveal hidden relationships, etc. [6, 7]. 

The well-known relationship between the composition (chemi-

cal, phase) of the material, microstructure, and different proper-

ties allows us to consider each experimental observation (e.g., 

measurement or calculation of a property taking into account 

processing parameters, composition, and structure) as a data 

point (vector) to create a database. Based on it, it becomes pos-

sible to build predictive models, which, among other things, can 

be used to predict the properties of materials. In addition to sig-

nificantly accelerating and reducing the cost of experimental re-

search, the construction of such models allows you to create ma-

chine learning models that are much more complex and critical 

to discovering and developing new materials. An example of 

such models is the prediction of fatigue characteristics of steel 

based on a set of experimental data [8], predicting the stability 

of compounds using modeling based on the theory of density 

functional (DFT method). On the other hand, the discovery of 

stable ternary compounds [9] and the optimization of structural 

parameters to improve the properties of magnetoelastic materi-

als [10] was carried out using other models [2, 11]. 

Particularly relevant is the use of machine learning tools for pro-

cessing Big Data, characterized by nonlinear, complex, and of-

ten unknown relationships between many variables [12]. How-

ever, the actual existence of preliminary, usually experimentally 

established data is the main factor that determines the possibility 

of using machine learning methods in Materials Science [13]. 

One of the examples is predicting the magnetic properties of per-

manent magnets based on rare earth metals (REM). In this case, 

it is necessary to take into account the chemical and phase com-

position of the material, crystallographic features, microstruc-

ture parameters, the size of the structural components, and so on. 

Our literature review revealed that in the case of Sm-Co alloys, 

there is a relatively limited number of publications that would 

contain all the information necessary to create an initial data-

base. On the other hand, it was found that in almost all consid-

ered publications, the magnetic properties are represented by the 

coercive force Hc. At the same time, data on the saturation mag-

netization Ms, remanence Mr, and maximum energy product 

(BH)max are presented to a lesser extent [14]. It is worth noting 

that minor information regarding the values (BH)max is available. 

It is known that the possibility of using machine learning tools 

to solve specific Material Science tasks depends on both the 

number of available observations and the quality of processing 

of data selected for the dataset [13]. Therefore, in addition to 

past data availability, it is crucial to pre-process them to ensure 

acceptable quality – monitoring and removal of anomalies and 
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outliers in data, data deduplication, missing data recovery, etc. 

As a result, the number of vectors in the database significantly 

reduces, often making it impossible to create an adequate model. 

The main stages of data pre-processing include data sampling, 

missing data recovery, anomaly detection, normalization, attrib-

ute type conversion, feature selection, etc. Next, various super-

vised data analysis methods are used for predictive modeling. 

Based on this, to assess the real possibility of predicting the mag-

netic properties of ferromagnetic alloys of the Sm-Co system, at 

the first stage, we attempted to use machine learning methods to 

predict coercive force based on the collected dataset [14]. In par-

ticular, an experimental comparison of eight existing machine 

learning methods was conducted to select the optimal techniques 

for building a stacking ensemble model based on heterogeneous 

elements. As a result, there is a significant increase in the accu-

racy of the proposed model compared to single-based algorithms 

that formed it (Neural Networks, AdaBoost, Gradient Boosting, 

and Random Forest algorithm) and other machine learning 

methods (SVR, SGD, Linear regression, and Tree). The high 

prediction accuracy of the proposed stacking model makes it 

possible to use it to predict the coercive force of Sm-Co alloys. 

However, such a strategy requires considerable energy and com-

putational costs to implement each individual method from the 

stacking ensemble. In addition, the disadvantage of this ap-

proach is the need to adjust a large number of different parame-

ters of all the methods underlying the work of stacking. 

However, a significant reduction in the number of vectors that 

can be used to predict the maximum energy product requires 

testing the possibility of using ensemble-based strategies of 

other classes to predict this property based on the collected data 

set. Thus, solving the Sm-Co alloy's maximum energy product 

prediction task, particularly with machine learning tools, is a 

topical task. It should be noted that the current development of 

Computational Materials Science encourages the use of such a 

strategy in various application areas, which are characterized by 

a limited amount of available data. However, such approaches 

to solving the stated task are insufficiently covered, particularly 

in the scientific literature. At the same time, the successful solu-

tion of the task can significantly contribute to the successful 

completion of many studies aimed at optimizing the properties 

of functional materials. 

In the case of the ferromagnetic materials based on Sm-Co al-

loys, we are talking about a significant reduction in time, finan-

cial and other costs associated with the production of prototypes 

of permanent magnets, and the study of their magnetic proper-

ties. The fact is that the creation of a new generation of perma-

nent magnets based on REM involves the development of new 

technological approaches to obtaining magnetoanisotropic pow-

ders of such alloys in the nanostructured state [15]. We used 

mechanothermal treatment in hydrogen to get such powders [16-

18]. It is shown that by changing the processing conditions, it is 

possible to control the phase composition of materials and influ-

ence the features of the microstructure. It is essential to establish 

the influence of these parameters on the studied materials' mag-

netic properties to select the optimal modes of hydrogen treat-

ment. That is why this paper aims to accurately predict Sm-Co 

alloy's maximum energy product via machine learning method 

in the case of a limited amount of data. 

The novelty of the results obtained in the article is as follows: 

 we have collected the data set, pre-processed it, and 

applied the feature bagging technique to solve the 

prediction of Sm-Co alloy's maximum energy prod-

uct task; 

 we have used Random Forest as a high-precision 

algorithm that implements a feature bagging strat-

egy; we have conducted experimental modeling 

and selected the optimal values of the parameters 

of its work; 

 we have established the highest accuracy of the 

studied machine learning method compared to 

other ensemble-based methods using four different 

performance indicators. 

 

MATERIAL AND METHODS 
 

Dataset description 

The dataset is based on the processing and analysis of a large 

amount of literature data on the dependence of the magnetic 

properties of Sm-Co alloys on their chemical composition, phase 

composition, state of the material, presence or absence of crys-

tallographic texture of the main ferromagnetic phase and micro-

structure parameters, including structural components (Fig. 1). 

As a result, we created a dataset containing 419 observations, 

each of which is described by 31 variables. It should be noted 

that the value of Hc as a target value is available for all observa-

tions, while the value of Mr for 411 and (BH) max for only 190 

vectors. A detailed description of the process of creating a da-

taset, its features, adopted simplicity, and a list of references 

used is given in [14]. The main difference between the dataset 

used in this paper and its full version is that it does not contain 

vectors for which there are no maximum energy product (BH) 

max values as the target value. In addition, input data do not in-

clude a variable describing the total content of 3d transition met-

als (Ti and Ni). The reason was the lack of information about 

their presence for all observations used in this dataset. 

 
Fig. 1 The attributes of the collected datasets 

 

Thus, the collected dataset for solving the task of predicting the 

maximum energy product of ferromagnetic alloys of the Sm-Co 

system contains 190 observations, each of which is described by 

30 variables. The dataset is available online at [19]. 

 
General methodology 

 
The research methodology involves collecting data by experts, 

their preliminary processing and preparation, selection and jus-

tification of the machine learning model, modelling and evalua-

tion of results (Fig. 2). Because experts collected the data for 

solving Sm-Co alloy's maximum energy product prediction task, 

feature selection procedures were not performed in this paper. 
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This is because each attribute of the collected data set signifi-

cantly affects the result of the prediction of the magnetic prop-

erties of the alloy. 

The authors have collected a set of data containing 190 observa-

tions. Collecting more data is a resource-intensive, time-con-

suming, and materially costly procedure. Therefore, the paper 

aimed to intellectually process a short dataset to obtain accurate 

prediction results, sufficient for using the studied model in prac-

tice. 

 
Fig. 2 General methodology 

 
The collected dataset is significantly nonlinear, so linear models 

will not provide sufficient prediction accuracy. Moreover, most 

single-based models and Artificial Neural Networks are charac-

terized by overfitting when processing a short dataset. Neverthe-

less, the chosen model should: 

 Efficiently process short datasets with a large num-

ber of independent attributes that are characterized 

by complex interconnections. 

 Ensure maximum prediction accuracy. 

 Ensure a minimum duration of the training proce-

dure. 

That is why the authors chose the strategy of ensemble learning 

to solve the prediction of Sm-Co alloy's maximum energy prod-

uct task. In addition to reducing the above disadvantages, this 

approach will minimize variance and avoid overfitting. 

 
Feature bagging technique 

 
The strategy of assembling machine learning methods involves 

using several weak classifiers or regressors to build a strong one. 

The primary aim of this step is to increase the prediction or clas-

sification accuracy. 

In the literature, there are several fields of development of en-

semble methods. The main ones are: boosting, bagging, and 

stacking. Each of them has its advantages and disadvantages, but 

we focused on the improved Bootstrap Aggregation or Bagging 

[20]. 

The basic version of the ensemble based on the bagging strategy 

involves using several algorithms (mostly decision trees) on 

small parts of the sample and generalizing the result. This ap-

proach reduces variance and, as a result, reduces the overfitting 

effect that is typical for the processing of short datasets. How-

ever, the main problem with this approach is that it uses a greedy 

algorithm for a variable split. Thus, the decision trees of such an 

ensemble can be very structurally similar and have a high corre-

lation in their predictions. 

Therefore, we used the feature bagging technique in this work, 

which was successfully implemented in the Random Forest al-

gorithm [21]. This approach is based on a straightforward ran-

dom sampling procedure (instead of choosing the most optimal 

split-point, as in basic bagging), which provides predictions 

from different sub-trees that are weakly correlated. That is why 

it ensures the success of the studied algorithm in solving regres-

sion and classification tasks in various application areas. There-

fore, we will choose this model for our research. 

 

RESULTS AND DISCUSSION 

 

Modelling and results 
The modeling process of the studied machine learning method 

to solve the prediction of Sm-Co alloy's maximum energy prod-

uct task took place using the environment of intellectual analysis 

and data visualization - Orange software [22]. This choice is due 

to a user-friendly and intuitive graphical interface, a wide range 

of machine learning models, and many different widgets for vis-

ualization. 

The modeling took place on a computer DELL, Intel CORE I7, 

8Gb. Among the Random Forest algorithm parameters estab-

lished experimentally, which provide the highest accuracy are: 

trees number – 10000, the subset that doesn't slip is equal to 5. 

Among the performance indicators, we have used the 

following [23]:  
Coefficient of determination (R2): 
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Taking into account all performance indicators (1)-(4) provides 

a complete assessment of the effectiveness of the studied meth-

ods. 

The simulation results for 10-folds cross-validation [24] are 

summarised in Table 1. 

 
Table 1 Values of the error's indicators for the method investi-

gated 

Performance indicators Random Forest algorithm 

MSE 18,963 

RMSE 4,355 

MAE 3,029 

R2 0,787 

 
As can be seen from the results shown in Table 1, the applica-

tion of the feature bagging technique implemented through the 

Random Forest algorithm to solve the Sm-Co alloy's maximum 

energy product prediction task demonstrates promising results. 

In particular, the adequacy of the studied model in the conditions 

of processing a short dataset (190 observations) [19] is con-

firmed by the high value of the Coefficient of determination. In 

addition, overfitting, which is typical during the processing of 

short datasets, is not observed. This is due to the features of the 

Random Forest algorithm, which can efficiently process short 

datasets, reduce variance and therefore is not prone to overfitting 

[25, 26]. 

To demonstrate the effectiveness of the researched algorithm to 

solve the Sm-Co alloy's maximum energy product prediction 

task, we will compare its work with the machine learning meth-

ods of other class. 

 

Comparison and discussion 

 
Several other ensemble-based methods of the same or other clas-

ses were chosen to compare the work of the studied method. In 

particular, we have investigated the efficiency of the following 

methods: 

 Gradient Boosting [27]; 

 CatBoost [28] 

 AdaBoost [29] 

Simulation of the existing machine learning methods from the 

ensemble class for comparison with the studied methods took 

place using Orange software [22]. The flowchart of the modeling 

process in the selected environment is shown in Fig. 3. 

 
Fig. 3 Flowchart of the modelling process for different ensem-

ble-based methods in Orange 

The optimal parameter for all investigated methods was the fol-

lowing: 

 Gradient Boosting regressor: number of trees is 

1000; learning rate – 0.01; limit the depth of indi-

vidual trees is 3; subset biggest that 2, the fraction 

of training instances is 1.0; 

 CatBoost regressor: number of trees is 10000; 

learning rate is 1.0, regularization - lambda is 3; 

limit the depth of individual trees is 5, the fraction 

of training instances is 1.0; 

 AdaBoost regressor: number of estimators is 

10000; learning rate is 1.0, exponential regression 

loss function  

10-folds cross-validation was also used to obtain reliable results. 

As a result, the following error values were obtained for all stud-

ied methods. It has been summarized in Fig. 4. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 4 Values of the error indicators for different ensemble-

based methods: a) MSE; b) RMSE; c) MAE; d) R2 

 

As can be seen from Fig. 4, two machine learning boosting 

methods, namely Adaboost and CatBoost, provide the lowest 

MAE error value (Fig. 4c). However, the boosting strategy 

shows the lowest results among all the considered methods in all 

other performance indicators. In particular, despite the fact that 
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the models based on it are adequate (Fig. 4d) according to the 

value of the Coefficient of determination (R2> 0.5), Random 

Forest here shows the highest value. 

If we consider the values of all other metrics except MAE (Fig. 

4 a), b), and d)), the studied machine learning algorithm provides 

the highest accuracy in solving the prediction of Sm-Co alloy's 

maximum energy product task. This result is due to the size of 

the data (small volumes) and the essential features of the Ran-

dom Forest method. It makes it possible to use this method as a 

basis for an intelligent subsystem for predicting the magnetic 

properties of large applied systems in Computational Materials 

Science. 

 

CONCLUSIONS 

The paper considers the task of predicting magnetic properties 

on the example of Sm-Co alloy. The authors have applied a ma-

chine learning approach to solve it. In particular, the authors 

solved the predicting Sm-Co alloy's maximum energy product 

task using the feature bagging technique. This ensemble strategy 

is implemented in the form of the existing machine learning 

method - the Random Forest algorithm. That is why it was cho-

sen to implement the modeling of the proposed approach. 

The authors have collected a dataset containing 190 observa-

tions. Based on this, experimental modeling of the method was 

performed, and the optimal values of its operation parameters 

were selected. As a result, it has been experimentally established 

that the studied approach provides a high value of the Coeffi-

cient of determination - 0.78 when solving the predicting Sm-Co 

alloy's maximum energy product task. 

By comparing with other ensemble-based methods of different 

classes, the highest accuracy of the studied approach is estab-

lished based on various performance indicators. 

Further research will increase prediction accuracy when solving 

the stated task. In particular, additional investigation will be con-

ducted to build stacking models based on a set of different Arti-

ficial Intelligence tools. In addition, it is planned to develop hy-

brid variants of Artificial Neural Networks [30-32] in the partic-

ular General Regression Neural Network and homogeneous en-

sembles based on it [33, 34], which demonstrate high efficiency 

in processing short datasets. 
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