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Abstract  

Part production by deep drawing technology brings important economic advantages. Cupping 

test is used to determine material suitability for deep drawing. The main principle of the test is 

redrawing of cylinder metal test piece to the cup. The result of the test is calculation of limiting 

drawing ratio (LDR) which states the ratio between the largest blank diameter and final cup 

diameter. Many cupping tests for various materials were performed in order to determine 

maximal value of LDR that would still allow deep drawing without failure of material 

integrity.Paper presents the theoretical determination of the limiting drawing ratio (LDR) in 

dependence on d0/t0 ratio and friction coefficient between blank and punch.Limiting drawing 

ratio (LDR) converges to Euler’s number (e) for high test piece depth and final cup diameter 

ratio values. Theoretical analysis of the cupping on drawing die with tractrix curve shows that 

maximal value of LDR may achieve value LDR>e. This is possible at lower values of test piece 

depth to final cup diameter ratio. Coefficient of friction has determining influence on LDR 

value.  
 

Keywords: deep drawing, differential equations, relative radial stress, cup, limiting drawing 

ratio, LDR 
 
 

1 Introduction 

Deep drawing technology is used to produce metal parts from various materials such as steel, 

copper, aluminum and their alloys [1-3]. The technology is used to make car body parts in 

automotive industry, cartridges in armament industry, mining blasting cups and various boxes 

and complex shaped parts [4]. Materials given for deep drawing must be tested for capability to 

be deep drawn and to determine limit condition for deep drawing [5, 6]. Testing is performed by 

the cupping test. Geometrical scheme of cupping process is shown in Fig.1. Cupping is 

performed without blank holder by two tools – drawing die and punch. Cylinder metal piece 

(roundel) with diameter D0 and thickness t0 is drawn by punch with diameter d0. Outer diameter 

of final cup dk is determined by the formula 
 

00k t2dd                  (1.) 
 

The thickness of material is not changing during the cupping process. The cupping test is 

characterized by LDR designed as  (non-dimensional value)  
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0

0

d

D
                  (2.) 

 

That describes the ratio between the largest blank diameterD0 and drawing punch diameter d0. 

Every forming technology has some material and technological limitation. If these limits are 

overrun, it leads to material failure [7, 8]. That means crack creation or even material destruction 

(breakaway of cup bottom) during cupping process. Therefore we are trying to find limits that 

would guarantee technological process without failure. It results from the formula (2) that the 

material has higher ability for deep drawing with increasing values of LDR. Many cupping tests 

were performed in laboratories to determine maximal value of limiting drawing ratio (LDR) 

designed as max0β [9] 

 

0

max0,

max0
d

D
β                  (3.) 

 

 

whereD0,max is maximal diameter of blank(roundel)at which the drawing cup is not yet damaged. 

Tests are performed in the step where the roundel diameter D0 is gradually increased until the 

cup breaks down. Maximal value of limiting drawing ratio max0β warns about technological 

limits of cupping; and overrun of the LDR may lead to technological failure [1]. Generic annular 

element with marked stress effecting particular areas was chosen to define the state of stress (see 

Fig.2). Cupping is performed without the blank holder. Designation of particular stress is as 

follows: radial stress r, tangential stress t and normal stress n. According to Shawki [9], the 

balance formula for forces influencing annular element (Fig.2) is  

 
 

Fig. 1 Scheme of the cup deepdrawing 

process 
 

 

 

 

 

 
Fig. 2 Annular element – Deep drawing 

process without blankholder 
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where the geometrical position of annular element is defined by its radius r and the angle r. The 

deformation resistance is expressed by stress p and friction between drawing material and die 

by friction coefficient f.  The differential equation (4) is based on the condition that the wall 

thickness of a cup is not changing in the cupping process. The wall thickness may be considered 

as constant because of differential of the wall thickness that is equal to zero (dt=0). This 

assumption allows to define t=t0.The differential equation (4) is constructed with using of 

plasticity equation 
 

ptr σσσ                  (5.) 

 

Construction of the equation (4) in more detail with the commentary was published by Pernis 

[10].Cupping material is expressed as p (yield point of the material) in the differential equation. 

We exclude this material constant (p) from differential equation (4) and substitute it with 

relative radial stress r  (6) due to general use of the equation [11]  
 

p

r
r




                 (6.) 

 

Differential equation (4) after the substitution (6) is as follows 
 

r

α cotgf1
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α cotg
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f
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σd
r
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
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                            (7.) 

 

The relative radial stress is given by the equation (7) as a function  frr r, , where the 

friction coefficient is a constant. Geometrical shape of drawing die profile curve is generally 

defined as a function g(,r) [12]. It is necessary to define this function to find out the solution of 

the differential equation (7). Various curves or their parts were used in history of the cupping: 

line, sinusoid, circle, ellipse or tractrix curve. Real tests and measurements show that evolvent 

catenary curve known as tractrix is the optimal drawing curve. Therefore the tractrix curve is 

used to solve the differential equation (7). 
 
 

2 Experimental Material and Methods 

This paper is aimed at materials that are processed by deep drawing technology. These materials 

include the group of steel materials DC01andDC06of the fieldEN10130/91; and non-ferrous 

metals such as copper, brass CuZn30 and selected aluminum alloys. 

General differential equation (7) describing cupping without blank holder has no analytical 

solution. To get a specific solution of differential equation (7), the geometrical shape of drawing 

die with tractrix curve was applied. Analytical solution in the first step of differential equation 

was used and numerical solution was used for the second step. The evaluation of LDR was 

determined for relative radial stress that must meet the condition 1r . 
 
 

3 Results and Discussion 

3.1 Drawing die with tractrix curve  

The tractrix curve is defined as evolvent upon general catenary curve and it is described by the 

function (8) 
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 tgh ttay      ,t sin ax                (8.) 

 

where t is a parameter. Drawing die with tractrix curve is shown in Fig.3. The curve starts at 

point C, then continues to point B and ends at point D. Zero point of coordinate system lies at 

point S. Parameter a describes the length of tangent to tractrix curve. The length of tangent is 

considered as the length form apposing point B on tractrix curve to point A.  The value of angle 

is 2/ at point C and 0 at point D. The annular element (see Fig.2) is located at point B. 

The location of point B is defined by radius r and angle . Their correlation is defined by 

rectangular triangle ABE (see Fig. 3) where parameter a is given by hypotenuse AB. The radius 

of tractrix curve r for point B is given by addition of cup external radius rk and triangle cathetus 

EB  
 

 

Fig. 3 Drawing die with tractrix curve 
 
 

αsin arr k                               (9.) 

 

Where rk and a are geometrical constants. Tractrix curve parameter a is defined by roundel 

dimensions and drawing punch diameter 
 

0
00 t

2

dD
a 


                          (10.) 

 

Differential of the radius dr is determined by derivation of the equation (10) with respect to the 

angle  
 

dαα cosadr                (11.) 
 

Radius r (9) and its differential dr (11) are then both inserted into differential equation (7) where 

the result differential equation (12) is 
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There are two geometrical constants a and rk in the equation (12). The substitution is used to 

reduce these constants to one non-dimensional constant k. 
 

a

rkk                (13.) 
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It is necessary to express k constant through t0/d0 ratio and also limiting drawing ratio before 

the substitution. 

 

0

0

0
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d

t
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d
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               (14.) 

 

Final differential equation suitable for evaluating is made by inserting the k constant (14) into 

the differential equation (12). 
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The final equation (15) belongs to a group of differential equations that could be described by 

general expression 

 

   


QσP
d

σd
r

r               (16.) 

 

Where P() a Q()are known functions defined by equation (15) as  
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
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The method of constant variation is used for analytical evaluation of the differential equation 

(16) with regard to its type. The result of the evaluation is the expression 
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
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Where C is integral constant (determined from initial conditions) and function F()is expressed 

by integral 
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g αcot αcos
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The evaluation of the integral (20) depends on the value of constant k. There are considerable 

three cases of function F() for deep drawing process [13,14]: 

 

a) 1k0   
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Integral constant C is determined according to Fig. 3 for angle 2/  and relative radial stress 

0r  . The value of integral constant C determined from (19) with respect to this condition is  
 

0C                 (24.) 
 

Specific value of relative radial stress )(r  for the value of angle is determined from 
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Numerical integration is then used to evaluate definite integral in the equation (25) for 

0 [15]. The functions F(α) and Q(α) are in convergence to infinity for 0 . Therefore the 

evaluation of relative radial stress  0r  from equation (25) is realized as limit value for 

0 [16] 
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The evaluation of relative radial stress )0(r is described by sequence in (26).  The relative 

radial stress at point D in Fig. 3 is 1)0(r  and it is independent of constant k and friction 
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coefficient f. The absolute value of radial stress at point D is equal to deformation 

resistance pr )0(  .The equation (25) is visualized in Fig. 4. The distribution of relative radial 

stress is valid for friction coefficient f=0.2 and initial dimensions of roundel D0=125 mm and 

a t0=1 mm. The parameter for particular curves is limiting drawing ratio. All solutions of 

differential equation (12) for any constants run through point ]0[1;];[ r  . Radial stress has a 

character of tensile strength; therefore, it cannot exceed the value of deformation resistance in 

deep drawing process. The curves where relative radial stress is 1σr  make conditions for 

destruction of the cup in deep drawing process. The values of relative radial stress have to be 

1σr   in entire range 2/0   to avoid the destruction of drawn material. It results from 

Fig. 4 that the value of limiting drawing ratio is 2.2β  . The relative radial stress rσ  cannot 

exceed the value 1σr   in entire high range along the drawing die.  
 

 

Fig. 4 Distribution of relative radial stress along the high of cupping die 
 
 

3.2 Limit values of LDR 

The highest value of LDR could be reached from the equation (15) for friction coefficient f=0  
 

αsin k

α cos

dα

σd r,0


               (27.) 

 

Differential equation (25) could be directly integrated. The value of relative radial stress 0,rσ  is 

evaluated at point D (see Fig. 3). 
 

 

Fig. 5 Dependence of theor on ratio d0/t0 
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From the equation (28) the following results for 10,r   
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The formula for evaluation of limiting drawing ratio is expressed from the equation (14) what 

could be used to evaluate theoretical value of the LDR. 
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where the expression  (k+1)/k is substituted by the equation (29).  Limit value of LDR is then 

determined according to the equation (30) for condition 00 t/d . 
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Fig. 6 Dependence of LDR on d0/t0ratio and friction coefficient f 
 

 

This result is documented on graph in Fig. 5. The curve converges to value LDR=e with 

increasing of d0/t0ratio. The value of friction coefficient f is always 0f   in real application of 

deep drawing process.  The visualization of differential equation (15) for friction coefficient 

0f   and relative radial stress 1σr   is shown in Fig. 6. Limit value of LDR is decreasing 

with the increase of friction coefficient f.  High values of 00 /td  ratio give the values of eLDR   

and on the contrary, low values of 00 /td  ratio ( 2000 t/d ) give the values of eLDR  . In 

general, the limit value of LDR is the function of the 00 /td ratio and friction coefficient f. 
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3.3 Discussion 

The definition of LDR shows that material has better ability to be drawn with increasing 

coefficient of friction. Many publications and examinations deal with that topic [17-20] to 

determine LDR limit. Various geometrical shapes of drawing die were examined such as are 

line, circle, parabola, sinusoid, ellipse and tractrix curve. In a view of minimal drawing force and 

maximal value of LDR, the best results were achieved with the use of the tractrix curve. This 

fact is documented in the publication of Shawki [9,21]. His results are shown in Fig.7. Limit 

value of LDR is expressed as a function of aggregated element 1,5
00 td  . Maximal value of 

LDR reached limit value LDR = 2.85. The author of publication [7] did not define complete 

measurement conditions. The publication does not define for which value of LDR the curves 

were created. Marciniak et al. [22] indicated 2.72eLDR   as the limit value. The value was 

determined differently than it is described in this paper. Morawiecki et al. [23] published Table 

1 where limit value achieves value of LDR=2.72 what corresponds with the equation 

(31).Theoretical limit value is LDR =2.25÷2.50. This value is reduced by the friction influence 

(the friction is not defined). Drastík and Elfmark [24] indicated the limit value of LDR as much 

as LDR=2.9. Theoretical analysis proves the possibility to reach such value as it is documented 

on graph in Fig. 6. The real measurements of LDR limit value prove the advisability of 

differential equation (15) application for relative radial stress calculation in the process of 

cupping without blank holder. Marumo [25] et al. and Sekhara-Reddy et al. [26] confirmed the 

dependency of LDR value on friction coefficient and also on depth of the material. Inoue and 

Takasui [27] documented the dependency of LDR value on the sheets anisotropy at rolled 

aluminum alloys sheets. Halkaci et al. [28] used finite element method (FEM) to calculate the 

LDR value.  
 

 
Fig. 7 Dependence of the  LDR on  d0/t0

1,5 ratio and drawing die profile [9] 
 
 

Table 1 Limit values of LDR [23] 

Name  
Represented by 

symbol 

Limit value 

theoretical technological 

Limiting drawing ratio LDR 2.72 2.25 – 2.50 

Logarithmic limiting drawing 

ratio 
ln(LDR) 1.0 0.8 – 0.9 
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4 Conclusions 

It is necessary to describe measurement conditions for evaluating of LDR limit value of specific 

real material. The basic conditions are ratio of roundel (blank) diameter to cup diameter, friction 

coefficient and geometrical shape of cupping die. The differential equation (15) stated above 

properly describes state of the stresses along the high of cupping die in cupping process. Needed 

cupping force could be calculated based on stated relative radial stress. The paper documents the 

importance of friction coefficient for cupping test. If friction influence conditions are not 

defined, the verification of LDRlimit value is problematic. 
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Nomenclature 

a  – constant of tractrix curve [mm] 

C – integral constant [–] 

D0 – diameter of roundel (blank) [mm]  

d0 – inner diameter of the cup or the punch [mm]  

dk – outer diameter of the cup [mm]  

e – Euler’s number [–]  

f – friction coefficient [–] 

k – constant of differential equation k=rk/a[–] 

LDR – limiting drawing ratio [–]  

r – radius of the annular element [mm]  

r0 – inner radius of the cup or the punch [mm]  

rk – outer radius of the cup [mm] 

t  – wall thickness of the cup [mm] 

t0 – thickness of roundel (blank) [mm] 

 – angle of element position [rad]  

 – limiting drawing ratio [–]  

n – normal contact stress [MPa]  

p – resistance to deformation [MPa]  

r – radial stress [MPa]  

rσ  – relative radial stress [–] 

t – tangential stress [MPa]  

 

 


