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ABSTRACT  

Flexural strength, hardness, and fracture toughness are the basic mechanical properties of ceramic materials. Manufacturers widely 
use this set of properties to ensure the durability of ceramic products. However, many factors, such as chemical and phase composi-
tions, sintering temperature, average grain size, density, and others, affect these properties, making it challenging to estimate corre-
sponding reliability parameters correctly. Experimental examination of the impact of these factors on the mechanical properties of 
ceramics is a rather time-consuming and resource-consuming procedure. This work aims to predict the mechanical properties of 
zirconia ceramics using machine learning tools. The authors have created an experimental database for predicting the hardness, flex-
ural strength, and fracture toughness of ZrO2-based ceramics based on chemical composition, phase composition, microstructural 
features, and sintering temperature on the mechanical properties of zirconia ceramics. To solve this problem, we compared the effec-
tiveness of using five single machine learning algorithms and five ensemble methods of different classes. We found a high accuracy 
of the predicted values of each of the three mechanical properties using ensemble methods from the boosting class (CatBoost, Ada-
Boost, and XGBoost). The authors developed a stacked ensemble of machine learning methods to improve the accuracy of determin-
ing the hardness property prediction task. The effectiveness of linear and nonlinear meta-regressors in the scheme of the developed 
ensemble is investigated. We obtained an increase in accuracy of more than 10% (R2) using our approach. 
 
Keywords: ceramics; prediction task; hardness; flexural strength; fracture toughness; machine learning, ensemble methods, small 

data approach 
 

 

INTRODUCTION 
 

Recently, many manufacturers of ceramic products (Metoxit AG 

(Switzerland), Yamakin Co. Ltd. (Japan), Dentsply Sirona 

(USA), Amann Girrbach AG (Austria), Morgan Advanced Ma-

terials (UK), and CERAM TEC (Germany) [1]) have provided 

customers with a wide range of precision products manufactured 

according to their needs, while ensuring sufficient durability of 

the products. Yttria stabilized zirconia (ZrO2-Y2O3), due to its 

high flexural strength and fracture toughness, is widely used for 

various applications [2–4]. The mechanical properties of ceram-

ics based on ZrO2 are close to those of stainless steel [2,5,6]. 

Products made of such ceramics can operate under high temper-

atures, high pressure, corrosion, and friction conditions. Yttria 

stabilized zirconia ceramics are widely used for the manufacture 

of bearings [7], friction plates, valve plates, ball valves, pipeline 

linings, nozzles, directional drilling tool components, control 

valves, pump plungers, metering pump parts, moulds, protective 

tubes of thermocouples, solid oxide fuel cells [8–12] and thermal 

protective coatings [9,10,13]. Zirconia is widely used to manu-

facture internal combustion engine components (bearings, roll-

ers, dies, pushers, valves, and fuel injectors) [14,15]. 

The use of ceramics based on ZrO2 in biomedicine began at the 

end of the 20th century [16]. The use of zirconia in dentistry has 

recently increased significantly due to the demand for metal-free 

restorations [17–22]. Ceramics should have high flexural 

strength to operate stably in the environment of the oral cavity 

for a long time [23]. Flexural strength is a critical mechanical 

characteristic determining the possible clinical use of ceramics 

in tooth restoration [24–26]. Compared to other dental ceramics, 

ceramics doped with Y2O3 provide the highest flexural strength 

[16,18,27]. Y-TZP ceramics also have high fracture toughness 

due to implementing the transformation strengthening mecha-

nism [2,10,20,28–32]. A successful combination of high flexural 

strength and fracture toughness, aesthetics, and biocompatibility 

made it possible to manufacture zirconia-fixed partial dentures 

and single-tooth reconstructions, which successfully replaced 

metal ones [23,28,30,33–37]. Endodontic pins, crowns and 

bridges [38], restorations and abutments for implants [24,33,39], 

aesthetic orthodontic brackets [40], and post systems [33] are 
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made of such ceramics. Due to higher fracture toughness and 

lower modulus of elasticity, zirconia is increasingly used to re-

place ceramics based on Al2O3 to manufacture implant-sup-

ported restorations [20,24,26]. The highly transparent Y-TZP 

ceramic with high purity and almost zero porosity (Zirconia sys-

tem Zenostar from Wieland Dental) is characterized by high op-

tical and mechanical properties and increased resistance to hy-

drothermal aging [41]. Wear resistance, characterized by hard-

ness, is also one of the critical mechanical characteristics of ce-

ramics, which determines the durability of finished products 

[15]. 

The results of orthopaedic studies have proven that zirconia ce-

ramics can be used to manufacture femoral head prostheses in-

stead of titanium or alumina prostheses [2,28,34,42]. The me-

chanical properties of the monolithic zirconia restorative mate-

rial are significantly superior to other all-ceramic restorative ma-

terials. However, some authors [33,41,43–45] report the disad-

vantages of zirconia anterior restorations, which are associated 

with fractures and chips due to the high sensitivity to brittle frac-

ture of zirconia implants. Therefore, zirconia ceramics stabilized 

by yttrium are used mainly for monolithic restorations of corner 

teeth monolithic posterior restorations, which made it possible 

to increase fracture resistance significantly [46]. 

The main task of scientists is to propose ways to improve the 

mechanical properties of zirconia ceramics, namely flexural 

strength, hardness, and fracture toughness, which will signifi-

cantly increase the durability and operating life of finished prod-

ucts. 

Based on the review of scientific literature and our research, an 

experimental database was created, which shows the influence 

of chemical composition, phase composition, microstructure 

features, and sintering temperature on the mechanical properties 

of zirconia ceramics. Experimentally determining these param-

eters' influence on flexural strength, hardness, and fracture 

toughness is a rather long and resource-consuming process. 

Therefore, machine learning methods were used to predict the 

mechanical properties of zirconia ceramics. 

The main contribution of this paper can be summarized as fol-

lows: 

• We collected three datasets of mechanical properties for 

ZrO2-based ceramics, which take into account the chemical 

composition, phase composition, microstructural features, and 

sintering temperature; 

• We investigated the effectiveness of five ensemble ma-

chine learning methods and five single machine learning algo-

rithms in solving the problems of predicting three mechanical 

properties of zirconia ceramics. Experimentally, we have estab-

lished a satisfactory prediction accuracy of all three studied me-

chanical properties by ensemble machine learning methods; 

• We have developed a new stacked ensemble of four ma-

chine learning methods to improve the accuracy of predicting 

the hardness of ZrO2-based ceramics. We have investigated the 

effectiveness of using different meta-regressors in the developed 

stacking ensemble. The prediction accuracy was increased by 

more than 10% using nonlinear meta-regressors compared to the 

most accurate existing method (XGBoost). 

The structure of this paper is the following. Section 2 describe 

the process of data collection. Research methodology as well as 

proposed stacking approach is described in section 3. Modeling 

process as well as obtained results is presented in section 4. Sec-

tion 5 describe the results of comparison and discussion. A sum-

mary of the obtained results is presented in the Conclusions sec-

tion. 
 
DATA COLLECTION 
 
Chemical composition is a base characteristic of ceramics. In 

general, it determines the type of chemical bonds formed be-

tween particles of initial powders during ceramics production. It 

is well known that oxide ceramics are defined as a group of ce-

ramics containing not more than 15% silica with little or no glass 

phase [47]. 

It is known that the structure of an advanced ceramic is under 

control on macrostructural and microstructural levels electronic 

and atomic levels and grain boundaries. This critical feature is 

considered when fabricating porous and dense ceramic materials 

with a refined microstructure. It should be noted that other fea-

tures also affect the performance of ceramic materials, e.g., crys-

tal structure, grain size, defect types and their chemical compo-

sition, and the nature of the impurities and their distribution [48]. 

Paper [49] studied YSZ ceramics stabilized with 3, 4, 5, 6, 7, and 

8 mol% Y2O3, which were sintered at 1550 °C for 2 h. It was 

shown that fracture micro mechanism operating in fine-grained 

microstructures with a comparatively high percentage of the 

monoclinic (m) ZrO2 phase is the most favourable for practical 

applications. This micro mechanism, implemented in 7YSZ ce-

ramics, shows the highest level of flexural strength and fracture 

toughness, as the crack propagates along the boundaries of the 

agglomerates of fine grains and occasionally cleavage through 

larger grains occurs. The last ones may be enriched with yttrium 

and have a cubic (c) or partially stabilized tetragonal (t) crystal 

structure. In this paper, Y2O3, MgO, CeO2, Al2O3, TiO2, and 

other complementary oxides were considered dopants for ZrO2 

based ceramics. Such a variety of dopant oxides allows for 

achieving different mechanical and functional properties of ma-

terials. Thus, the role of each of them in the formation of ZrO2 

based ceramics flexural strength, hardness, and fracture tough-

ness should be evaluated quantitatively and in terms of preva-

lence over other oxides. 

Phase composition is one of the essential characteristics of ce-

ramics. It is especially crucial for ZrO2 based ceramics in which 

a tetragonal to monoclinic (t-m) phase transformation may occur 

under external loading and other concomitant factors. On the one 

hand, the phase composition of a ceramic material directly re-

lates to its chemical composition. On the other hand, it depends 

to a great extent on a sintering mode (i.e., sintering temperature, 

dwell time, heating/cooling rate, etc.). Three phases, namely cu-

bic and/or tetragonal and/or monoclinic, can be formed in ZrO2 

based ceramics doped with various oxides. Paper [50] studying 

ZrO2 based ceramics revealed that the t-ZrO2 phase became 

more stable when the average grain size decreased, particularly 

when values of this parameter became smaller than 0.3 μm. Such 

a value was set as a critical one. At smaller values of the average 

grain size, the t-ZrO2 phase was found to stabilize at ambient 

temperature [51]. 

It was reported for ZrO2 based ceramics with the addition of 5.29 

wt% Y2O3 and 0.005 wt% Al2O3 [52] that the t-m transformation 

and, as a result, transformation strengthening of the material was 

retarded by non-uniform distribution of Y2O3, intensive grain 

growth at high sintering temperatures, as well as high percentage 

of c-ZrO2 formed under these conditions. Papers [53–55] noted 

that the studied YSZ ceramics with 2-3 mol% Y2O3 contained a 

significant percentage of the tetragonal phase and showed the 

highest trend towards transformation strengthening. It was also 

reported in [37] on the microstructure of widely used in dentistry 

ZrO2 based ceramics formed by 0.3–0.4 μm grains of the tetrag-

onal phase. Other authors [56] showed that the grain size in te-

tragonal zirconia stabilized with yttrium after sintering for 2 h at 

1550 °C was 0.3–0.7 μm. 

Paper [57] investigated the effect of the ZrO2 percentage on the 

fracture toughness and flexural strength of Al2O3–ZrO2 ceram-

ics. They detected α-Al2O3 and the monoclinic and tetragonal 

ZrO2 phases in the studied ceramics. With a gradual increase in 

the total ZrO2 percentage, the t-ZrO2 percentage decreased. It 

was shown that retardation in the growth of Al2O3 crystals was 
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reached due to adding 10–20% ZrO2, thus improving the ceram-

ics' mechanical properties. 

Therefore, each of the three zirconia phases (cubic, tetragonal, 
and monoclinic) was analysed regarding its domination in cor-
responding ceramic material. 

The sintering temperature is a parameter that provides energy 

for the consolidation of initial powders due to the interdiffusion 

of elements on the particle interfaces [58–61]. Corresponding 

bonds are formed between particles of initial powder, followed 

by their recrystallization. It positively affects the flexural 

strength and fracture toughness of ZrO2 based ceramics. Paper 

[62] showed that ZrO2 ceramics containing 5% Y2O3, <2% 

HfO2, and <1% (Al2O3 + SiO2) had the smallest grain size of 

0.07 μm. In contrast, ZrO2 ceramics containing 4–6% Y2O3, 

<1% Al2O3, max 0.02% SiO2, max 0.01% Fe2O3, and max 0.04% 

Na2O had the largest grain size of 0.35 μm. The authors found a 

correlation between the grain size in the studied ceramics, and 

their sintering temperature, namely 0.35 μm was after sintering 

at 1600 °С and 0.07 μm after that at 1350 °С. 

Paper [63] reported that 3YSZ ceramics sintered at 1550 °C 

showed about 17% higher flexural strength than 6YSZ ceramics 

sintered at 1450 °C. They suggested that lower concentrations of 

Y2O3 might be positively considered in terms of the mechanical 

properties of such ceramics. The higher temperature of sintering 

these ceramics also improves the ceramics' flexural strength, 

hardness, and fracture toughness. 

Thus, the sintering temperature is an important parameter allow-

ing the formation of a set of microstructural components with 

certain morphology in ZrO2 based ceramics ensuring their opti-

mal flexural strength, hardness, and fracture toughness. 

The average grain size of ZrO2 based ceramics is the parameter 

that relates to its phase composition and sintering mode [64]. 

However, trends in a change of grain size for these ceramics with 

an increase/decrease in a separate phase fraction and an in-

crease/decrease in a sintering temperature are ambiguous.  

Paper [65] reported results on the transformation toughening of 

ZrO2 ceramics stabilized with 3–4 mol% Y2O3. They found that 

the spontaneous t-m transformation does not occur in a micro-

structure with nano-sized grains, and the stress relaxation does 

not follow. Another study [66] showed that the ZrO2 ceramic 

becomes unstable and prone to spontaneous t-m transformation 

with increased grain size. Such transformation may occur in this 

material at the crack tips and in the material bulk resulting in 

stress relaxation. The authors showed that the morphology and 

size of microstructural components, especially pores, and grains, 

depend to a great extent on the sintering mode. They performed 

mechanical tests of the ceramics and revealed a maximum flex-

ural strength of 904 MPa for material sintered at 1580 °С. How-

ever, SEM images of the microstructure did not exhibit a signif-

icant difference in the grain size of the ceramics sintered at 1580 

°С for 10 min and at 1510 °C for 120 min. 

Therefore, this parameter is relevant for characterizing the me-

chanical behaviour of ZrO2 based ceramics. 

The density of ceramics is an important characteristic that allows 

indirect evaluate its density-related parameters such as porosity, 

relative density, etc. It is essential to consider the size, shape, 

and specific proportion of pores since they mainly affect the den-

sity of ceramics. Paper [67] studied the relative density of ZrO2 

with three mol% Y2O3. They found that with an increase in the 

temperature and holding time, values of this parameter increased 

and reached 95% and 99% after sintering for 50 h at 1300 °С 

and 1500 °С, respectively. The same trend was observed for the 

average grain size. The values of this parameter for the ceramics 

after holding for 50 h in a temperature range of 1300–1500 °С 

were 0.2–0.9 μm. The fraction of the cubic phase grew from 11 

to 15 wt% at 1300 °С and from 15 to 19 wt% at 1500 °С during 

holding for 10 h. Further exposition at these temperatures did 

not cause a discernible change in the phase fractions of the ce-

ramics. 

The above-mentioned density-based parameters are used for es-

timating the sintering kinetics and evaluating the probability of 

microcrack nucleation and reduction of the lifetime of ceramic 

products. Therefore, density is relevant to be used for assessing 

the hardness, flexural strength, and fracture toughness of ZrO2 

based ceramics. 

Accordingly, the database features were the oxide fractions 

(ZrO2, Y2O3, MgO, CeO2, Al2O3, TiO2, HfO2, SiO2, and others), 

the average grain size, density, and sintering temperature were 

represented by numerical values. In this case, the numerical val-

ues were related to the following units: mol% for the oxide frac-

tions, μm for the average grain size, g·cm-3 for density, and °С 

for the sintering temperature. Data for phase composition (cubic 

and/or tetragonal and/or monoclinic zirconia phase) were trans-

formed into a binary system as follows: 1 corresponds to the 

dominant phase, and 0 indicates other phases. A schematic rep-

resentation of the initial database for modelling is given in      

Fig. 1. 

 

 

 
 
Fig. 1 Schematic representation of the initial database for modelling 

 

MATERIAL AND METHODS 

 
This section describes the machine learning methodology used 

in the paper, and the developed stacked ensemble of machine 

learning methods. 

Machine learning methods 

 

The modern development of Computational Materials Science 

is based on artificial intelligence tools. Information accumulated 

over the years about a particular object of observation allows 
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them to be used to predict/categorize its future states. Regression 

analysis using machine learning methods provides the possibil-

ity of preliminary modeling to minimize computational human 

or time and material resources for manufacturing a product. De-

termining the functional properties of a material or its quality 

characteristics by modeling with artificial intelligence methods 

before it is created also minimizes the use of precious raw mate-

rials, particularly in the case of the possible defective material. 

A considerable arsenal of machine learning methods for analys-

ing various data exists today. In most cases, single machine 

learning algorithms do not provide satisfactory forecast accu-

racy, which imposes several limitations on their practical appli-

cation. It is due to many independent attributes that should be 

considered during the analysis, complex nonlinear relationships 

within the available dataset, and the available minimum training 

sample size since data in this area is expensive and time-con-

suming to collect. 

Developing an ensemble approach to building machine learning 

methods has become widespread to improve prediction accuracy 

in recent years. The four classes of ensemble methods, boosting, 

bagging, stacking, and cascading have been used in various ap-

plication areas to solve multiple data mining tasks.  

This paper is devoted to studying the effectiveness of ensemble 

methods for solving the problem of predicting the mechanical 

properties (hardness, flexural strength, and fracture toughness) 

of ZrO2-based ceramics. This choice is explained by a number 

of their advantages, in particular [68]: 

• Reducing errors of the ensemble machine learning method 

compared to every single model that forms it; 

• Significant improvement of forecast accuracy by combin-

ing forecasts of several models instead of one; 

• Possibility to increase the generalization properties of ma-

chine learning methods by using heterogeneous algorithms in an 

ensemble approach, each of which is based on different data 

characteristics; 

• The ability to reduce or even avoid the problems of over-

learning or underearning that are typical for single-based ma-

chine learning methods: 

• Scalability by adding auxiliary models to the ensemble. 

Among the disadvantages of the ensemble approach are usually 

the complexity of its implementation and the need for large com-

puting resources. Given that the experimental data in materials 

science are primarily small, such problems will not arise when 

using ensemble approaches in this work. 

The authors focused their work on the most popular among the 

existing methods, namely [69]: 

• AdaBoost; 

• CatBoost 

• XGBoost; 

• Random Forest; 

• Gradient Boosting. 

Let's look at the principles and advantages of each of them. 

Gradient Boosting is an ensemble machine learning method 

from the boosting algorithms class. It is based on the principle 

of iterative improvement of the method by adding "weak" mod-

els to the ensemble. Gradient Boosting works by trying to find 

new models that will be able to analyse better the parts of the 

data set where the current model performs poorly. Among the 

advantages of Gradient Boosting are high prediction or classifi-

cation accuracy, reduced sensitivity to noise components, and 

the ability to work efficiently with large data sets. 

Adaptive Boosting (AdaBoost) is one of the most famous en-

sembles of machine learning methods from the boosting class. It 

is widely used to solve both classification and regression tasks. 

The AdaBoost method is based on training a sequential series of 

weak models over a given dataset. After each iteration, the 

model assigns a weight to each data point, depending on how 

well it was predicted/classified. Each subsequent model focuses 

on the data points that were miscategorized. Among the ad-

vantages of AdaBoost is its high accuracy. In addition, unlike 

Gradient Boosting, AdaBoost is characterized by adaptability to 

changes in the data set and the ability to avoid retraining. 

Categorical Boosting (CatBoost) is a Gradient boosting method 

explicitly developed for working with categorical variables in 

data. CatBoost is based on finding the optimal weights and di-

viding the data into "leaves" that improve the prediction at each 

training step. The method uses the joint work of decision trees 

and ensembles them to get the best result. Among the advantages 

of the CatBoost method are the automatic processing of categor-

ical variables, low probability of overfitting, and support for par-

allel data processing with the ability to flexibly adjust model pa-

rameters. 

XGBoost (eXtreme Gradient Boosting) is a type of Gradient 

boosting method explicitly developed to increase the speed and 

efficiency of similar algorithms. The XGBoost method com-

bines several independent models built one after the other and 

supported by gradient boosting. At each step of the Gradient 

boosting, the model tries to improve the previous result and in-

crease the forecasting accuracy. The advantages of the XGBoost 

method are high speed, particularly on large datasets, high pre-

diction accuracy, and atomic selection of model hyperparame-

ters. 

Random Forest is a machine learning method that belongs to the 

class of bagging methods. It uses an ensemble of different trees 

that divide the input data into many smaller parts, thus solving 

the problem of overfitting that often arises when working with a 

single decision tree. The Random Forest method combines the 

results of many trees to obtain a more accurate result. Each tree 

randomly selects a subset of the input data and the functions used 

to divide the data into smaller groups. After each tree is built, 

they are combined for the overall result. Among the advantages 

of the Random Forest method are high prediction accuracy on 

large and small data samples, no need for feature selection pro-

cedures, and resistance to random errors. 

This paper will use these methods to solve the following re-

search objectives. 

 
Proposed stacking approach 

 
Suppose the training data set is short enough, and several exist-

ing machine learning methods provide adequate prediction mod-

els. In that case, the overall prediction accuracy can be improved 

by fusing machine learning methods [70]. This class of machine 

learning methods has gained wide popularity in recent years due 

to the ease of implementation, the intuitive nature of this ap-

proach, and the good results they provide. 

Stacking machine learning methods is an approach used to com-

bine different types of predictive models with improving predic-

tion accuracy [71]. In stacking, low-level predictive models 

(base models) are used to create new features for a higher-level 

model, making it possible to consider more information during 

prediction. 

The principle of stacking is as follows. A set of prediction mod-

els is selected, trained on the training sample, and the results of 

their work form a new dataset, where the features are the outputs 

of each of the low-level prediction models [68]. This dataset is 

used to train the meta-algorithm, which is mostly based on linear 

machine learning methods. The result obtained by the meta-al-

gorithm is the value to be determined. 

The scientific literature distinguishes between homogeneous and 

heterogeneous stacked ensembles. A heterogeneous stacked ma-

chine learning method is an approach that combines predictive 



V. Kulyk et al. in Acta Metallurgica Slovaca 

 

 

 

97 DOI: 10.36547/ams.29.2.1819 

models of different types to obtain the best result [68]. Hetero-

geneous stacking models should use models based on different 

algorithms, which can increase the prediction accuracy. 

Due to the limited size of the training dataset, in this paper, we 

propose to build a stacking model where the selection of a set of 

low-level models is based on the criterion of the maximum value 

of the coefficient of determination [68]. For example, if some 

single machine learning algorithms demonstrate a determination 

coefficient R2>0.7, they will be selected to form a set of basic 

lower level regressors. 

The choice of a meta-algorithm for training a higher-level stack-

ing model will also be based on the same criterion. Here, both 

linear and nonlinear models can be used. Typically, linear meta-

algorithms are used in the scientific literature. They are very fast 

and can increase accuracy by 2-3%. In this paper, along with 

linear, we will use and test the effectiveness of nonlinear models. 

This approach is justified by the fact that a nonlinear model as a 

meta-algorithm can significantly improve prediction accuracy. 

Since we are talking about processing short datasets, its training 

time will not significantly affect the performance of the stacking 

ensemble in general. 

 

RESULTS 

 

This section presents the numerical characteristics of the da-

tasets used in this work. The results of studies on the effective-

ness of using ensemble machine learning methods for predicting 

flexural strength, hardness, and fracture toughness are presented. 

A stacked ensemble was built based on the selection of the most 

accurate machine learning methods, and the use of linear and 

nonlinear methods as meta-regressor in the proposed ensemble 

was investigated.  

The modeling was performed using Orange software [72]. This 

decision was made due to the simplicity and convenience of per-

forming both intellectual analysis and visualization of the results 

obtained in this environment.  

The accuracy of the studied methods was evaluated using com-

monly used performance indicators: MSE, RMSE, MAE, and R2 

[68]. The results' reliability was achieved using the 5-fold cross-

validation option of the Test and Score widget of the Orange 

software environment. 

 
Dataset description 

 
As described in the previous section, the authors collected da-

tasets for predicting the hardness, flexural strength, and fracture 

toughness of ZrO2-based ceramics. Since, for many observa-

tions, the values of hardness, flexural strength, or fracture tough-

ness were missing, and the attributes Grain size and Density con-

tained a significant number of missing values, such observations 

were removed from the dataset. Therefore, the size of the col-

lected data set for each property of ZrO2-based ceramics was 

different. The difference in the number of observations could 

reach two or more times, so we considered predicting three prop-

erties of ZrO2-based ceramics as three separate tasks. Thus, we 

obtained three data sets for predicting hardness, strength, and 

fracture toughness, respectively. 

In particular, the dataset for predicting the hardness of ZrO2-

based ceramics contains 68 observations and 15 attributes. It is 

available in the ResearchGate repository [73]. 

The dataset used to predict the flexural strength of ZrO2-based 

ceramics contains 33 observations and 15 attributes. It is availa-

ble in the ResearchGate repository [74]. 

The dataset for predicting the fracture toughness of ZrO2-based 

ceramics contains 80 observations and 15 attributes. It is availa-

ble in the ResearchGate repository [75]. 

These three datasets were used to study the effectiveness of ap-

plying machine learning tools in solving the stated task. 

Investigations of the existing ML method for prediction 

properties 

Single machine learning methods do not always provide suffi-

cient accuracy to be used in practice. An ensemble of machine 

learning methods can be used to avoid this problem. The small 

size of the collected data for analysis also justifies this choice. 

 

General flowchart of the investigations existing ML method 

 

Fig. 2 shows a general flowchart of the procedure for modeling 

and investigating the effectiveness of various machine learning 

methods for solving each of the three tasks of this study.  

 

 
Fig. 2 General flowchart of the modeling process 

 

In addition to the ensemble methods, we also investigated the 

possibility of using some well-known single machine learning 

methods, shown in Fig. 2. We used linear regression, support 

vector machines with different kernels and a neural network as 

a universal approximator. 

It should be noted that all these machine learning methods were 

used to solve each of the three tasks. The optimal parameters of 

their work are shown in Table 1. 

 

Fracture toughness property prediction results of ZrO2 based 

ceramics 

 

The modelling results using all the studied machine learning 

methods for predicting the fracture toughness property of ZrO2-

based ceramics are presented in Table 1. Since we are talking 

about the analysis of small data sets, the duration of the training 

procedures for all the studied methods was not considered. 

 

Table 1 Performance indicators for predicting fracture tough-

ness property of ZrO2 based ceramics by all investigated meth-

ods 
ML-based method MSE RMSE MAE R2 

CatBoost 0.963 0.982 0.726 0.70 

AdaBoost 1.082 1.040 0.714 0.66 

Random Forest 1.277 1.130 0.818 0.60 

Gradient Boosting 1.330 1.153 0.886 0.58 

XGBoost 1.451 1.205 0.910 0.55 

Linear regression 1.917 1.384 1.074 0.40 

SVR rbf 1.953 1.398 0.983 0.39 

SVR linear 2.367 1.539 1.092 0.26 

Neural Network 3.114 1.765 1.126 0.03 

SVR polynomial 6353.594 79.709 15.777 -1987.37 

 
As can be seen from Table 1, several ensemble methods have 

been used to predict the fracture toughness of ZrO2-based ce-

ramics with sufficient accuracy. In addition, the neural network 

as a universal approximator also provided a high prediction ac-
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curacy. The highest prediction accuracy, in this case, was ob-

tained using the CatBoost algorithm. It reaches 70% according 

to the coefficient of determination (R2). 

 

Flexural strength prediction results of ZrO2 based ceramics 

 

The performance indicators for predicting the flexural strength 

of ZrO2-based ceramics using all the studied machine learning 

methods are given in Table 2.  

 

Table 2 Performance indicators for prediction flexural strength 

of ZrO2 based ceramics by all investigated methods 
ML-based 

method 
MSE RMSE MAE R2 

AdaBoost 23982.681 154.863 102.368 0.77 

Gradient Boosting 26008.552 161.272 97.282 0.75 

Random Forest 31361.96 177.093 136.282 0.70 

CatBoost 31589.968 177.736 129.061 0.69 

Neural Network 35878.783 189.417 1467.486 0.65 

XGBoost 38835.797 197.068 132.565 0.62 

Linear regression 63414.302 251.822 186.174 0.39 

SVR linear 83207.59 288.457 238.939 0.19 

SVR polynomial 
103184.74

6 
321.224 274.056 0.01 

SVR rbf 
105450.31

4 
324.731 279.01 -0.02 

 
As seen from Table 2, in this case, ensemble prediction methods 

from both boosting and bagging classes also demonstrated high 

prediction accuracy. However, the highest accuracy of the flex-

ural strength prediction for ZrO2-based ceramics was obtained 

using the AdaBoost algorithm. It reaches 77% (according to the 

coefficient of determination). 

 

Hardness property prediction results of ZrO2 based ceram-

ics 

 

The accuracy of predicting the hardness property of ZrO2-based 

ceramics using all the studied machine learning methods is 

shown in Table 3. 

 

Table 3 Performance indicators for prediction hardness property 

of ZrO2 based ceramics by all investigated methods  
ML-based method MSE RMSE MAE R2 

XGBoost 2.562 1,60 0,960 0,79 

Neural Network 2.726 1,65 1,218 0,78 

CatBoost 2.816 1.68 0.974 0.77 

Random Forest 3.322 1.82 1.086 0.73 

Gradient Boosting 4.710 2.17 1.242 0.61 

Linear regression 6.037 2.46 1.710 0.51 

AdaBoost 6.414 2.53 1.273 0.47 

SVR polynomial 6.784 2.61 1.709 0.44 

SVR linear 7.366 2.71 1.808 0.40 

SVR rbf 10.059 3.17 1.892 0.18 
 
As can be seen from the obtained results, in this case, as in the 

two previous ones, the ensemble methods constructed an ade-

quate prediction model with acceptable results. In particular, the 

highest prediction accuracy of the hardness property of ZrO2-

based ceramics (at almost 80%) was obtained using the 

XGBoost algorithm. 

 

The results of the application of the proposed ensemble 

 

Generally, improved prediction accuracy in small data pro-

cessing can be achieved using stacked homogeneous or hetero-

geneous ANNs. 

 

General flowchart of the proposed approach 

 

Fig. 3 shows a flowchart of the modeling procedure according 

to the stacking ensemble proposed in this paper. First, it should 

be noted that it was developed to increase the prediction accu-

racy of the hardness property of ZrO2-based ceramics. This is 

due to the sufficient size of the dataset to implement this ap-

proach. 

 

 
 

Fig. 3 General flowchart of the proposed stacking approach 

 

The stacking of machine learning methods was performed, con-

sidering their accuracy. In particular, the proposed ensemble in-

cluded those methods from all the studied ones that demon-

strated a determination coefficient value of more than 0.7. As 

can be seen from the previous table, these methods include 

XGBoost, Neural Network, CatBoost, and Random Forest. 

In addition to choosing weak regressors for the first step of the 

stacking ensemble procedure, in this paper, we investigated the 

impact of using different meta-regressors for the second step of 

the stacking training procedure. For this purpose, we used tradi-

tional linear methods (Linear regression, Ridge regression) and 

nonlinear machine learning methods (Adaboost and Gradient 

Boosting).  

 

Results of applying different meta-regressors in the proposed 

ensemble 

 

As a result of the construction of the new ensemble method, we 

investigated 4 variants of the stacking combination of four ma-

chine learning methods. They differed only in the meta-regres-

sor used during the second step of the training procedure (Linear 

regression, Ridge regression (Default stacking), Adaboost and 

Gradient Boosting). The performance indicators for applying the 

developed algorithms to solve the problem of predicting the 

hardness property of ZrO2-based ceramics are presented in Ta-

ble 4. 

 

Table 4 Performance indicators for prediction hardness property 

of ZrO2 based ceramics by different stacking algorithms 
ML-based method MSE RMSE MAE R2 

Stacking with Adaboost 1.311 1.145 0.688 0.893 

Stacking with Gradient Boost-

ing 
1.378 

1.174 0.778 
0.887 

Default Stacking 2.034 1.426 0.917 0.833 

Stacking with Linear regression 2.109 1.452 0.88 0.827 
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As seen from Table 4, the nonlinear machine learning methods 

used as a meta-regressor significantly increase the accuracy of 

the developed stacking ensemble compared to the use of linear 

meta-regressors. 

 

COMPARISONS AND DISCUSSION 

 

In this section, we present the results of comparing all the stud-

ied methods in solving the problems of predicting the mechani-

cal properties of ZrO2-based ceramics, namely, hardness, flex-

ural strength, and fracture toughness. 

 

Comparison of the fracture toughness property predicted 

results by different ML-based methods  

 

The results of comparing the accuracy of different machine 

learning methods based on the coefficient of determination and 

standard deviation in solving the fracture toughness property 

prediction task are shown in Fig. 4.  

 

 
(a) 

 
(b) 

Fig. 4 Comparison of the fracture toughness property prediction 

task results using all investigated methods based on: (a) R2; (b) 

RMSE 

 
As can be seen from Fig. 4, the existing single methods demon-

strate the inadequacy of the prediction models built on their ba-

sis. In this case, the coefficient of determination is below 0.5. 

The studied ensemble methods from different classes demon-

strate different accuracy results. In particular, the XGBoost 

method demonstrates the adequacy of the model but the unsatis-

factory prediction accuracy. 

The highest prediction accuracy for the fracture toughness prop-

erty of ZrO2-based ceramics was obtained using the CatBoost 

algorithm. It reaches 70%. Further improvement of the predic-

tion accuracy of this mechanical property is possible by increas-

ing the training dataset. 

Comparison of the flexural strength predicted results by dif-

ferent ML-based methods  

 

The results of comparing the accuracy of different machine 

learning methods based on the coefficient of determination and 

standard deviation when solving the flexural strength prediction 

task are shown in Fig. 5. 

 

 
(a) 

 
(b) 

Fig. 5 Comparison of the flexural strength prediction task results 

using all investigated methods based on: (a) R2; (b) RMSE 

 

As can be seen from Fig. 5, the existing single methods (except 

Neural Network) demonstrate the inadequacy of the prediction 

models built on their basis. In this case, the coefficient of deter-

mination is significantly lower than 0.5. 

The studied ensemble methods from different classes demon-

strate different accuracy results. In particular, the XGBoost 

method demonstrates the adequacy of the built model but the 

unsatisfactory prediction accuracy at 62%. 

The highest prediction accuracy for the flexural strength of the 

ZrO2-based ceramics was obtained using the AdaBoost algo-

rithm. It reaches 77%, which is quite sufficient for solving this 

task. Further increase in the prediction accuracy of this mechan-

ical property is possible by increasing the training dataset.  

 

Comparison of the hardness property predicted results by 

different ML-based methods  

 

The results of comparing the accuracy of different machine 

learning methods based on the coefficient of determination and 

standard deviation when solving the hardness property predic-

tion task are shown in Fig. 6. 

As shown in Fig. 6, the studied ensemble methods from different 

classes demonstrate satisfactory forecasting results. In particu-

lar, four of the researched methods provide more than 70 % ac-

curacy, and the most accurate method, XGBoost, provides a pre-

diction accuracy of 79 %. 
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(a) 

 
(b) 

Fig. 6 Comparison of the hardness property prediction task re-

sults using all investigated methods based on: (a) R2; (b) RMSE 

 

In general, the following conclusions can be drawn from the re-

sults of comparing the prediction accuracy of three mechanical 

properties by existing machine learning methods: 

In most cases, single machine learning algorithms do not provide 

the ability to build an adequate model for predicting each of the 

three properties of ZrO2-based ceramics; 

The high accuracy of the prediction of all three properties of 

ZrO2-based ceramics was obtained by ensemble methods; 

Random Forest, as a representative of the bagging class of en-

semble machine learning methods, also provides sufficient pre-

diction accuracy. Still, different ensemble algorithms from the 

boosting class obtained the highest prediction accuracy for all 

three properties. 

Fig. 7 shows the results of comparing the algorithms developed 

by the authors for building a stacking model with the most accu-

rate existing machine learning method for solving the hardness 

property prediction task. 

As can be seen from Fig. 7, the use of linear meta-regressors in 

the developed stacking ensemble increases accuracy compared 

to the existing XGBoost. In particular, the use of Linear regres-

sion provides an increase in accuracy by 3.7%. The use of Ridge 

regression as a more accurate algorithm than the previous one as 

a meta-regressor provides a 4.3 percent increase in prediction 

accuracy compared to XGBoost. However, if we use nonlinear 

machine learning methods as meta-regressors in the stacking en-

semble proposed by the authors, the accuracy of solving the 

hardness property prediction task increases significantly. In par-

ticular, Gradient Boosting increased accuracy by 9.7% com-

pared to the existing XGBoost and by 5.4% compared to stack-

ing based on Ridge regression as a meta-regressor.  

The developed stacking ensemble based on the AdaBoost algo-

rithm demonstrated the highest prediction accuracy as a meta-

regressor. It allowed us to increase the prediction accuracy by 

more than 10% compared to the existing machine learning 

method. In general, the prediction accuracy of the hardness 

property at the level of 90% allows the use of the developed 

stacked ensemble in practice. 

 
Fig. 7 Comparison of the hardness property prediction task re-

sults using all investigated stacked algorithms based on: (a) R2; 

(b) RMSE 

 

Given the much smaller amount of available data, it does not 

seem appropriate to use the developed stacking ensemble or to 

build a similar one according to the criterion described in this 

work for predicting the other two mechanical properties of ZrO2-

based ceramics for training. In particular, the dataset for predict-

ing the flexural strength of ZrO2-based ceramics is 1.5 times 

smaller than the one under study. The training set for predicting 

fracture toughness is almost three times smaller. For the intel-

lectual analysis of such critically small amounts of data, other 

strategies should be used, in particular [76–79]: 

• Data augmentation with the selected tools followed by in-

telligent analysis using machine learning methods based on a 

significantly larger amount of training data; 

• Ensemble methods using one or two General Regression 

Neural Networks or SGTM neural-like structures with nonlinear 

input extension based on various algorithms of the "input dou-

bling methods"; 

• Homogeneous stacked ensembles of Artificial Neural Net-

works (without training or with non-iterative machine learning) 

based on the random deviation method. All these will be the fo-

cus of our further research. 

 

CONCLUSION 

 
This work has studied microstructure-related mechanical prop-

erties of ZrO2 based ceramics. Chemical and phase composi-

tions, sintering temperature, average grain size, and density in-

fluence the microstructure and, as a result, base mechanical 

properties such as hardness, flexural strength, and fracture 

toughness of ceramic materials. The impact of each factor on 

these properties may be different and depends on which of the 

property is being analysed. 

The tasks of determining mechanical properties using traditional 

methods are quite a resource-, time-, and man-consuming. In this 

paper, the authors propose using artificial intelligence tools to 
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solve the problem of predicting the mechanical properties of zir-

conia ceramics using machine learning tools. For this purpose, 

the authors collected three datasets to predict the hardness, flex-

ural strength, and fracture toughness of ZrO2-based ceramics 

based on chemical composition, phase composition, microstruc-

tural features, and sintering temperature on the mechanical prop-

erties of zirconia ceramics. The data was cleaned and prepared 

for applying artificial intelligence methods. 

The modeling was performed using the Orange software. For 

this purpose, the authors selected five well-known single ma-

chine learning methods and five ensemble methods from differ-

ent classes.  

The authors found high accuracy in predicting mechanical prop-

erties using the existing ensemble methods. However, the high-

est accuracy for hardness, flexural strength, and fracture tough-

ness prediction tasks was obtained using different boosting en-

sembles. In particular, CatBoost provided 70% accuracy in pre-

dicting the fracture toughness property, AdaBoost - 77% in pre-

dicting the flexural strength, and XGBoost - 79% in predicting 

the hardness of ZrO2-based ceramics. 

We have performed a study to determine the effectiveness of us-

ing five single machine learning algorithms and five ensemble 

methods from different classes to solve the problem. The high 

predicting accuracy was determined for every three mechanical 

properties using ensemble methods from the boosting class (Cat-

Boost, AdaBoost, and XGBoost). In addition, the authors devel-

oped a stacked ensemble of machine learning methods to im-

prove the accuracy of solving the hardness property prediction 

task. The effectiveness of linear and nonlinear meta-regressors 

in the developed ensemble is investigated. It was experimentally 

established that the accuracy of solving the hardness property 

prediction task could be increased by more than 10% (R2) using 

the developed stacking ensemble with a nonlinear meta-regres-

sor at its core (89%). 

Experimental studies have confirmed the effectiveness of the 

proposed stacking ensemble in solving the task. However, the 

authors found that the use of linear meta-regressors to imple-

ment the second step of training the proposed ensemble in-

creases the accuracy of solving the problem by 2-4%, while non-

linear meta-regressors, AdaBoost, provide an increase in accu-

racy of more than 10% according to the coefficient of determi-

nation. The 90% accuracy level allows for applying the devel-

oped approach in practice. 

 
Acknowledgments: This research was funded by National Re-
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