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ABSTRACT  

The application of simulation tools plays an important role not only in terms of understanding the processes taking place in the 

production and the possibility to prevent failures, but ultimately, and most importantly, to optimize the production process. Thus, 

simulation tools should be able to work with many input parameters and process them in such a way that the data obtained in the form 

of simulation outputs are as close as possible to the real conditions taking place in a production process. Metal Additive Manufacturing 

(AM) represents one of the processes in which many parameters influence the final quality of the part and its properties. Supports, 

traditionally used in Powder Bed Fusion (PBF) techniques, and their relative volumes are also of great importance, since their reduc-

tion plays an important role in terms of cost-effectiveness, which can be increased by minimizing the support structures. The aim of 

this paper is the numerical simulation in the Simufact Additive software, which can handle the input parameters of the metal AM 

process and, most importantly, to present an additive tool for support optimization. Two simulation analyses with the same input 

parameters were performed, comparing each other the support material distribution, volume fraction or shape deviation with respect 

to the conventional support generation method and the function allowing the support generation by means of the optimization mode. 

A lower variation in the shape of the part, in its volume fraction, in the density of the generated support structures as well as in the 

spacing of the generated support structure was achieved by using the support generation optimization mode. 
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INTRODUCTION 
 

Metal additive manufacturing (AM) technology is mainly used 

in the aeronautical, aerospace and biomedical industries where 

parts’ weight reduction plays a very important role [1]. How-

ever, residual stresses arising in the continuous transient melting 

and solidification process are still a significant obstacle to the 

AM of high-performance large-size metal parts, since they can 

lead to defects such as excessive deformation and cracking [2-

4]. Therefore, additional operations are required to alleviate 

stresses during or after the fabrication process. 

Several simulation tools solving design problems or analyzing 

material behavior in forming, joining, or injection molding pro-

cesses are available in the market, as well as simulation pro-

grams specific to the field of AM [5-7]. One of the specific ad-

vantages of AM is the possibility of producing a part regardless 

of its geometry [8]. The metal AM process brings several ad-

vantages over conventional manufacturing technologies. The 

synergy/simultaneity achieved in AM, where the material in the 

form of powders and the geometry of the product are formed at 

the same time, equally requires the linking of the part design 

with the knowledge of the process. Since the entire manufactur-

ing process, properties and factors entering metal AM are 

closely interrelated and interdependent, it is necessary to under-

stand their influence on the part production. One way to achieve 

this is through the application of numerical simulation tools. De-

spite being a layer by layer technique, PBF processes are differ-

ent from Fused Deposition Modeling (FDM), where molten 

plastic layers are deposited one onto the other [9]. The complex-

ity of the geometry encountered in the production of metal parts 

represents the highest degree of complexity with respect to the 

size of the elements and their structure. 

Nowadays, it is possible to come across various simulation tools 

for both design and process, but these are often only simple sim-

ulations. Increasing demands on the part geometry, the manu-

facturing process, or the chosen material require the use of a sim-

ulation tool containing computational modules that can not only 

predict the behaviour of the material but also provide process 

control and optimise the part functionality [10]. Therefore, the 

correct selection of the simulation tool is very important. 

The possibility of applying simulation tools in the AM process, 

where it is possible to work with process input factors, allows 

controlling complex stress states as well as the microstructure 
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and geometry of the part. The control of the microstructure is 

done by the volume of the part, where process maps are used to 

define the extent of its control [11,12]. It also guarantees flexi-

bility and agility, invaluable in product development. Further-

more, it allows for the generation and local control of the part 

geometry and material behaviour in each volume element - 

voxel in the part. Among other things, metal AM reduces the 

costs associated with producing moulds, tooling, or jigs on CNC 

machines. Its process efficiency also contributes to reducing ma-

terial consumption in connection with the application of topo-

logical optimization. The combination of printed parts and post-

machining likewise brings cost and time benefits [13]. 

One of the main requirements of the manufacturing process is 

dimensional accuracy, which is very difficult to predict. This is 

because it is ultimately the result of multiple interactions that are 

interconnected. These interactions include material type, ma-

chine process parameters (laser power, deposition strategy), 

physical properties, as well as part deformations caused by 

shrinkage and residual stresses in the material [14]. Therefore, it 

is important not only to understand the interactions taking place 

in the metal additive manufacturing process but equally to try to 

prevent negative phenomena from affecting the final quality and 

function of the part: it is the simulation of metal AM processes 

that plays an important role in the design of metal parts.  

In Laser Powder Bed Fusion (L-PBF), the material in the form 

of metal powder is melted using a laser, which results in local 

heating that affects the mechanical properties as well as the di-

mensional accuracy of the part. It is therefore equally important 

to think about the thermal conductivity of the surrounding mate-

rial and how much heat is dissipated due to the amount of heat 

concentrated by the laser to a certain point. In the L-PBF process 

[15-20], it is necessary to work with a larger number of input 

parameters as they affect the stability of the manufacturing pro-

cess. The performance of the process can be influenced by fac-

tors such as settings, conditions, machine platform, powder ma-

terial, or part geometry. During the process, negative features 

such as geometric deformations or residual stresses can be man-

ifested, which have a significant effect on the strength of the fu-

ture part [21]. These negative properties are closely related to 

the thermo-physical phenomena taking place in the manufactur-

ing process, where rapid re-cooling cycles occur. These cycles 

may induce anisotropic properties of the future part, which af-

fects its functionality and consequently leads to dimensional and 

geometrical changes in the accuracy of the final parts [22,23]; 

thermal gradients represent the main problem of the process. De-

formation and damage to the part can result from residual 

stresses exceeding the yield strength and even the ultimate 

strength of the material [24]. The subsequent stress relaxation 

occurs during the removal of the part from the plate platform, 

and its final extent depends on the geometry of the part and its 

processing. Therefore, it is very important to recognize them 

early as well as to take them into account when planning the use 

of the part.  

The point of using simulation tools is therefore not only to un-

derstand the manufacturing process but also to prevent unwanted 

influences. By using them, part deformations, residual stresses 

and other defects can be predicted and avoided before the actual 

production of the part, that is to say before the printing process 

takes place. Among other things, they can provide data on the 

behaviour of the material at the level of voxels appearing in a 

three-dimensional volume. This has implications not only for 

part production capabilities but also for the design, optimisation 

and control of the materials being designed. Ultimately, this is a 

costly process compared to conventional technologies, where in 

this case the goal is to achieve part production with minimal de-

fects [25].  

Thus, these are effective tools to achieve quality partly due to 

the correct setting of process input parameters and the ability to 

monitor the inter-behaviour of related parameters during pro-

duction [26-27]. The application of simulation tools and the pos-

sibility of comparing the effect of changing parameters or using 

different materials is more advantageous in terms of time and 

economy. The simulation tools work with two FEA methods de-

signed to evaluate the shape deformation and residual stresses of 

printed parts. It can be the possibility of applying the thermo-

mechanical method or the inherent deformation method [28-30]. 

Simufact Additive software works with strain (ε∗) values used 

for calculation, prediction of residual stress and partial distortion 

[31]. It also works with voxel elements, where a smaller voxel 

size means longer computation time [32].   

In preparation for printing, laser parameters and parameters re-

lated to the scanning strategy can be relatively easily set. Spier-

ings [33] compared 3 types of stainless steel powders with dif-

ferent particle size distributions. At maximum laser power, he 

determined the optimum scanning speed and then evaluated the 

surface texture for the fabricated samples. The smaller layer 

thickness may not necessarily mean higher surface quality, but 

the particle size distribution in the powder has a significant ef-

fect on the surface quality. Calignano [34] dealt with the optimi-

zation of the formation of support structures for AlSi10Mg alu-

minium alloy. The author evaluated the possibility of printing 

walls without support structures from an angle of 30° from the 

substrate. When the wall inclination angle was between 30° and 

45°, the aluminium alloy samples showed higher surface rough-

ness. This is confirmed by Wang [35], who measured surface 

roughness and strain on a structure with variable part overlap 

angle. 

Yi et al. [36] researched the achievement of geometric accuracy 

in sample fabrication by considering the laser power and scan-

ning speed used. As a result, the geometric accuracy of IN718 

material samples was reduced due to the influence of lower 

speed and higher laser power. Huo et al. [37] applied the Simu-

fact simulation tool to investigate the distortion of IN718 sam-

ples due to the influence of process parameters. The research 

concluded that each set of parameters chosen for the manufac-

turing process influenced the part quality. Increasing the laser 

power resulted in higher distortion effects, but conversely, in-

creasing the scanning speed reduced the distortion effect. Some 

authors [38-39] investigated the effect of distortion and dimen-

sional accuracy by analysing the change in part height size since 

this is the most affected dimension in the manufacturing process.  

The simulation tool in solving the effect of changing the scan-

ning speed and laser power on the thermal behaviour of 

AlSi10Mg powder was applied by Yang [40]. The aim was to 

provide optimized solutions for the input parameters of the print-

ing process without the need for extensive experiments. Cheng 

et al. [41] compared the experimental results with the Simufact 

simulation tool, where they used a multiscale approach method 

to analyse the part distortion. Some authors investigated the pre-

diction of distortion, using a method incorporating a mathemat-

ical heat source model for thermo-mechanical finite element 

analysis - FEA [42]. This was a method where the powder is 

considered as the input material. Despite several papers dealing 

with the influence of parameters on various properties of the fu-

ture product, there is still a lack of information on the accuracy 

and reliability of the simulation tools used for the additive man-

ufacturing process of metals. One of the simulation tools that 

allow virtual simulation and optimization of factors such as pa-

rameter and material settings, removal of direction and support, 

and creation of support structure is Simufact Additive software. 

It is a simulation tool aimed at predicting and solving mistakes 

during the entire printing, heat treatment, cutting and HIP - Hot 

Isostatic Pressing process before sending the part to the machine. 

The present paper deals with the generation of part support de-

pending on a defined critical surface angle, which has been set 

to 45°. Two simulation analyses were performed with the same 
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input parameters, comparing each other the support material dis-

tribution, volume fraction, or shape deviation considering the 

conventional support generation method and the function allow-

ing the support generation by means of an optimization mode. 

 

MATERIAL AND METHODS 
 
For simulation purposes, the component shown in Fig. 1 and de-

signed for the aerospace industry was chosen and assigned a spe-

cific material in the form of a powder. AlSi10Mg was selected 

as the alloy powder from the Simufact Additive software data-

base. 

 

 
Fig. 1 Part selected for simulation 

 
Aluminium components produced by laser melting are (almost) 

pore-free and have a homogeneous microstructure. Subsequent 

heat treatment can reduce the anisotropy that arises during the 

printing process and thus individually adjust the properties of the 

component. The heat treatment involves annealing to reduce the 

stress at 300 °C for 2 hours. 

For simulation, the L-PBF was chosen, and a mechanical con-

figuration was identified for the simulation process, which oper-

ates based on the eigenvalues of the deformations. A manufac-

turing type simulation was selected as the simulation type, to 

which three levels were assigned to represent the sequence of 

the process phases. The following levels were chosen: 1. Build, 

2. Cutting, 3. Support removal. 

An imported CAD model file is converted to the Parasolid for-

mat, and a surface mesh is created based on it. The surface mesh 

is thus always present from the import of the part and consists of 

triangular facets/elements. However, this mesh is not used for 

the analysis itself, since the Simufact Additive software works 

with voxel elements containing hexahedral elements for a so-

called discrete part representation, which works in combination 

with the volume fraction of the element.  

When defining the support formation, the value of the parameter 

defining the critical surface angle was chosen to be 45°. To bet-

ter visualize the different areas where the support material will 

be needed, a function was used to display them based on a colour 

scale defining a specific angle on the surface of the part (Fig. 2). 

 

 
Fig. 2 Critical surface angle preview for support generation  

 
For simulation purposes, the same input parameters were se-

lected in both analyses based on the strain values (Fig. 3). Pa-

rameters defined as input data were powder layer thickness of 

0.03 mm and laser power of 200 W. The support material distri-

bution, volume fraction, or shape deviation considering the con-

ventional method of support generation and the function allow-

ing support generation using the optimization mode were com-

pared with each other.  

 

 
Fig. 3 Sample design in CAD 

 
The creation of the part support based on the specified critical 

surface angle of 45° is shown in Fig. 4 and Fig. 5. The conven-

tional method of generating the support structure without using 

the optimization function represents in Fig.4. while Fig. 5 

demonstrates the generation of the support structure with the ac-

tivation of the support optimization function. The geometry of 

cylindrical shape was used for both cases of support structure 

generation.  

 

 
Fig. 4 The conventional method of generating support 

 

 
Fig. 5 Support generation using the optimization function 

 
A closer comparison of the generated support structures without 

and with the use of the support generation optimization function 

is shown in detail in Fig. 6. In the comparison, it is possible to 

see the change not only in the density of the generated support 

structures but also in the spacing and size of the generated sup-

port. The difference lies in the recognition of important areas in 

the part construction where the size and spacing need to be main-

tained to maintain the necessary properties of the part after fab-

rication.  

At the same time, the distribution of support structures has 

changed. More support structures have been created where the 

load is higher than in places with lower loads. 
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Fig. 6 Distribution of support structures: a) without optimization 

b) with optimization of support structure generation 

 

It was necessary to define the size of an element known as a 

voxel to finish pre-processing of the simulation. A voxel defines 

a value on a consistent grid in a three-dimensional space, and 

thus the voxel itself refers to the volumetric structure of the grid. 

Its size thus represents the number of contained layers of the 

metal powder.  

The surface mesh was set to a value of 2.42 mm for each analysis 

and the voxel element size was chosen to be 2 mm in all direc-

tions, i.e., voxel size X/Y/Z. The reason for selecting this value 

was to reduce the computation time. The purpose of the voxel 

grid is to analyse the deformations that will take place during the 

simulation process as well as the formation of the so-called vol-

ume decomposition of the particles. In general, however, more 

accurate solutions can be achieved by reducing the element size.  

This allows the software to display the volume fraction of the 

part, the value of which describes how much of the voxel volume 

is filled with geometry. A comparison of the volume fraction 

display without and with the use of support generation optimi-

zation is shown in Fig. 7 and Fig. 8. 

 

 
Fig. 7 Volume share without using support generation optimiza-

tion 

 

 
Fig. 8 Volume share using support generation optimization 

The Simufact Additive software also can display the volume 

fraction in the cross-section (Fig. 9 and Fig. 10), which can be 

used to determine the quality of the mesh. If the volume fraction 

parameter has a blue colour inside the part, in that case, this vol-

ume fraction is close to zero, which results in the mesh quality 

not being good. In that case, a smaller voxel element size should 

be used. 
 

 
Fig. 9 Volume fraction in the cross-section without using sup-

port generation optimization 

 

 
Fig. 10 Volume fraction in the cross-section using support gen-

eration optimization 

 
A matrix solver called Iterative Sparse, designed for the mechan-

ical configuration, was chosen for the computation. Simulation 

results such as total displacement, elastic strain, plastic strain, 

flow stress, relative density, temperature, shape deviations and 

others can be obtained.  

The effect of generating the support structure without and with 

the use of the optimization function on the shape deviation was 

compared. Without using the support optimization function, the 

surface shape deviations were obtained in the range of min -0.52 

mm and max 0.47 mm (see Fig. 11). With the use of the support 

optimization function, the surface shape deviations were 

achieved in the range: min -0.11 and max 0.06 mm (see Fig. 12). 

If positive values are reached, the calculated shape is outside the 

initial reference shape, and if negative values are reached, the 

calculated shape is inside the initial reference shape. 
 

 
Fig. 11 Shape deviation without support optimization   

 

 
Fig. 12 Shape deviations with support optimization   
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The analyses without and with the use of the support generation 

optimization function (Fig. 9) led to results on the total support 

volume: 

- support generation without optimization Σ Volume 71875.6 

mm3 

- generating support with optimization Σ Volume 42693.7 mm3 

 

CONCLUSIONS 

The paper dealt with the generation of part support depending 

on a defined critical surface angle, which was set to 45°. The 

support structure generation was compared between conven-

tional generation and a function allowing the use of support op-

timization.  

The use of a complementary tool designed to optimize support 

in Simufact Additive is important to achieve less deviation of 

part shape. Virtual acquisition of the results replaces time-con-

suming and costly testing and thus the visual presentation of the 

results based on the measurements allows the user to quickly as-

sess whether the deviations are within the tolerances. 

The simulation results show that by using the support optimiza-

tion function, a reduction in the volume fraction of the part can 

be achieved. This reduction plays an important role in terms of 

cost-effectiveness, which can be further increased by minimiz-

ing the support structures. At the same time, by comparing the 

support structure formation without and with the optimization 

function, changes in the volume fraction values were found. The 

distribution of support structures was also changed. It can be 

concluded that more support structures were formed where the 

load is higher than in the locations with a lower load. 
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