THERMODYNAMIC ANALYSIS OF INTERFACIAL REACTION SIN SIC/Mg MATRIX COMPOSITES

Shu Ge Yang¹, Kun Xia Wei¹, Wei Wei¹, Gui Hong Geng², Hui Wang³, Jing Hu¹
¹ School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
² School of Materials Science and Engineering, Beifang University of Nantionalities, Yinchuan750021, P. R. China
³ School of Mechanical Engineering, Changzhou University, Changzhou 213164, P. R. China

Received: 08.11.2016 Accepted: 22.11.2016

*Corresponding author: *e-mail:kunxiawei@163.com* (K. X. Wei), Tel.:+86 519 8633 0095, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China

Abstract

Gibbs free energy of chemical reactions between SiC particles and the Mg matrix at the different temperature has been calculated based on the Gibbs-Helmholtz equation and thermodynamic equilibrium of chemical reactions. The thermodynamic stability of Al_4C_3 and $MgAl_2O_4$ in the interface was investigated. The results showed that when the activity of Si on interface is more than a critical value of A_{Si}^0 . A stable Al_3C_4 cannot formed when A_{Si} is more than A_{Si}^0 , which is not a constant, increasing with the temperature. The mass fraction and distribution of SiO₂ in the interface have directly effects on the reactions of SiO₂ with Mg and Al. There is a critical value of A_{Mg}^0 , A_{Al}^0 and A_{Al}^1 , which increases with the temperature. When the mass fraction of Si in the interface is greater than a critical value, there is no interfacial reaction at a certain temperature. The interface reaction models have been proposed.

Keywords: magnesium matrix composites, interfacial reactions, MgAl₂O₄, Al₄C₃

1 Introduction

Particle reinforced magnesium matrix composites have a high specific strength and modulus of elasticity, good damping properties and low coefficient of thermal expansion, which have a great potential in aerospace, automotive and military fields. SiC has many excellent properties such as good thermal stability, low expansion coefficient and high hardness, making it widely used as a reinforcing phase in series of magnesium alloy [1-4]. More attentions have been paid on phase structure, mechanical properties and strengthening mechanisms in SiC particle reinforced magnesium matrix composites. The effect of the distribution of SiC particle size on magnesium matrix composites has illustrated that the reinforcing effect is optimal due to the particles completely distributed in grains [5]. It is found that the pulsed magnetic field has a significant influence on the solidification structure of SiCp / AZ91D Composites [6]. In the SiCp/AZ91D composites fabricated by vacuum pressure infiltration process, the SiC particles were homogenously distributed, the interface bonding of the particles and the matrix were favourable [7]. Reaction of Mg and Al with SiO_2 on the surfaces of oxidized SiC, leads to the formation of MgO and MgAl₂O₄ crystals, which act as diffusion barriers between Al and SiC at the interfaces [8].ASiO₂ layer is naturally present or artificially introduced at the SiC surface, which is presumed to modify the wettability and interfacial bonding between the reinforcement and the Al-Mg alloys

[9-11]. A particle pull-out fracture will be the predominant mode if the particle strength is higher, while a tensile loading-induced SiC particles fracture will take place prior to interface failure if the interface strength is higher [12]. However, a thermodynamic analysis of interfacial reactions in SiC/Mg matrix composites has not been reported.

In the present work, the thermodynamic conditions of interface reactions in the SiC/Mg matrix composite, thermodynamic stability of Al_4C_3 and $MgAl_2O_4$ and the process of interfacial reactions have been investigated. The interface reaction models have been proposed.

2 Interfacial chemical reactions

There are many chemical elements such as silicon (Si), aluminium (Al), zinc (Zn), copper (Cu), oxygen (O) and carbon (C)in magnesium alloy. During the solidification processing of SiC/Mg composites, the possible reactions are shown in **Table 1**.

Number	Chemical equations	Enthalpy changes in
		reactions∆G ⁰ (J/mol)
	$SiO_2(s)+2Mg(l)=2MgO(s)+Si(s)$	-326570.4+35.42T
2	$2Mg(l)+Si(s)=Mg_2Si(s)$	_
3	$3SiC(s)+4Al(l)=Al_4C_3(s)+3Si(s)$	103900-16.48T
4	$3SiO_2(s)+4Al(l)=2Al_2O_3(s)+3Si(s)$	-719292.24+83.903T
5	$2SiO_2(s)+2Al(l)+Mg(l)=MgAl_2O_4(s)+2Si(s)$	-558519.12+56.689T
6	$MgO(s)+Al_2O_3(s)=MgAl_2O_4(s)$	_
7	$2MgO(s)+4Al(l)+3SiO_2(s)=2MgAl_2O_4(s)+3$ Si(s)	—
8	$3Mg(l)+4Al_2O_3(s)=3MgAl_2O_4(s)+2Al(l)$	_
9	$3Mg(l)+Al_2O_3(s)=2Al(l)+3MgO(s)$	_
10	SiC(s)=Si(l)+C(s)	123470-37.57T
(11)	$Al_4C_3(s) = 4Al(1) + 3C(s)$	266520-92.3T

Table 1 Chemical reactions during the solidification processing of SiC/Mg composites

The calculation formula for the constant pressure and heat capacity is defined as [13]:

$$\Delta C_{\rm p} = \Delta a + \Delta b \times 10^{-3} \mathrm{T} + \Delta c \times 10^{5} \mathrm{T}^{-2} + \Delta d \times 10^{-6} \mathrm{T}^{2}$$
(1.)

Equation (1) is integrated to obtain a reaction process that function relationship is between ΔH^{θ} and temperature,

$$\Delta H^{\theta} = \Delta H_0 + \Delta a T + \frac{\Delta b}{2} \times 10^{-3} T^2 - \Delta c \times 10^5 T^{-1} + \frac{\Delta d}{3} \times 10^{-6} T^3$$
(2.)

The equation (1) is divided by **T**, integrated, and multiplied by the temperature T, the obtained formula is subtracted by Equation (2). ΔG^{θ} is a function of temperature during the reaction.

$$\Delta G^{\theta} = \Delta H_0 + \Delta a T - \Delta a T \ln T - \frac{\Delta b}{2} \times 10^{-3} T^2 - \frac{\Delta c}{2} \times 10^5 T^{-1} - \frac{\Delta d}{6} \times T^3$$
(3.)

DOI 10.12776/ams.v22i4.828

p-ISSN 1335-1532 e-ISSN 1338-1156 Here, ΔH_0 is the integral constant. The thermodynamic parameters a, b, c, d can be obtained from inorganic thermodynamic data sheet. The temperature of solidification processing SiC/Mg composites is generally between 700 - 1000K. Therefore, thermodynamics parameters a, b, c, d arechosen in the range of 700 -1000K.

3 Thermodynamics of interfacial products

3.1 Thermodynamic stability analysis of interfacial MgAl₂O₄

Reaction equations (5)-(8) show the possible way to generateMgAl₂O₄on the interfaces. Equation (1) is satisfied the reaction equilibrium:

$$2\ln A_{MgO} - 2\ln A_{Mg} = -\Delta G_1^{\theta} / RT - \ln A_{Si} + \ln A_{SiO_2}$$
(4.)

Equation (5) is satisfied the reaction equilibrium:

$$\ln A_{MgAl_2O_4} - \ln A_{Mg} - 2 \ln A_{Al} = -\Delta G_5^{\theta} / RT - 2 \ln A_{Si} + 2 \ln A_{SiO_2}$$
(5.)

 $A_{MgAl_2O_4}$, A_{MgO} , A_{SiO_2} and A_{Al} are regarded as 1[14], and the following equations are referred as:

$$-2\ln A_{Mg} = -\Delta G_1^{\theta} / RT - \ln A_{Si}$$
(6.)

$$-\ln A_{Mg} = -\Delta G_5^{\theta} / RT - 2\ln A_{Si}$$
(7.)

Fig. 1 Variations of the $\ln A_{Mg}$ value vs. the temperature as the maximum and the minimum A_{Si} in the interface

In **Fig. 1** the line 1 and 2 represents the value of A_{Mg} in the equilibrium when A_{Si} = 1 corresponding to the Equation (6) and (7) at the different temperatures, respectively. Line 1 and 2' represent the value of A_{Mg} when A_{Si} is the minimum value according to the Equation (6) and (7). It is shown that the interfacial reaction is controlled by the Equation (5) at a certain temperature when the mass fraction of Mg in the interfaces is corresponded to a certain value and the corresponding activity is below A_{Mg}^{0} which is related to the line 1'. When a fraction of Mg in the interface is more than a certain value and the corresponding activity is more than A_{Mg}^{0} , the interfacial reaction is controlled by the Equation (1). The interface products of Mg, Al and SiO₂ are largely dependent on the Mg

content [15]. When the mass fraction Mg is below8%, the interfacial reaction is controlled by the Equation (5). When the mass fraction Mg is more than8%, the interfacial reaction is controlled by the Equation (1) [16]. It is consistent with the present theoretical thermodynamic analysis. Equation (4) is satisfied the reaction equilibrium:

$$2\ln A_{MgO} - 2\ln A_{Mg} = -\Delta G_1^{\theta} / RT - \ln A_{Si} + \ln A_{SiO_2}$$
(8.)

$$2\ln A_{Al_2O_3} - 4\ln A_{Al} = -\Delta G_4^{\theta} / RT - 3\ln A_{Si} + 3\ln A_{SiO_2}$$
(9.)

In the Equation (9), A_{Mg} and A_{Al} meets the following equilibrium:

$$2\ln A_{Al} - 3\ln A_{Mg} = -\Delta G_9^{\theta} / RT - 3\ln A_{MgO} + \ln A_{Al_2O_3}$$
(10.)

The $A_{MgAl_2O_4}$, A_{MgO} , A_{SiO_2} and $A_{Al_2O_3}$ are considered as 1[14], and taking the Equation (10) into the Equation(5). It can be obtained

$$4\ln A_{AI} = \Delta G_4^{\theta} / RT + 3\ln A_{Si}$$
(11.)

$$\frac{3}{8}\ln A_{AI} = \Delta G_5^{\theta} / RT - \Delta G_9^{\theta} / 3RT + 2\ln A_{Si}$$
(12.)

In **Fig. 2** the line 3 and 4 represent the value of A_{Al} in the equilibrium when $A_{Si}=1$ corresponding to the Equation (11) and (12) at the different temperatures, respectively. Line 3'and 4' represent the value of A_{Al} when A_{Si} is the minimum value according to the Equation (11) and (12).

It is shown that the interfacial reaction is controlled by the Equation (4) when the activity of Al is below A_{Mg}^0 which is related to the line 4' in the interface. The interfacial reaction is controlled by the Equation (5) when the activity of Al is more than A_{Mg}^0 which is related to the line 4' in the interface. When the value A_{Al} is in the range of A_{Al}^0 and A_{Al}^1 , the Equation (4) and (5) occurs simultaneously. Both of A_{Al}^0 and A_{Al}^1 are the function of temperature.

Fig. 2 Variations of the A_{Al} value vs. the temperatures as the maximum and the minimum A_{Si} in the interface varies with temperatures

3.2 Thermodynamic Stability Analysis of interface Al₄C₃

The Al₄C₃ is generated in the Equation⁽³⁾ in the **Table 1**. At a certain temperature, it meets the equilibrium:

DOI 10.12776/ams.v22i4.828

$$\Delta G_3^{\theta} = -RT \left(\ln A_{Al_4C_3} + 3 \ln A_{Si} - 3 \ln A_{SiC} - 4 \ln A_{Al} \right)$$
(13.)

The activity of A_{SiC} and A_{Al} is considered as 1, and then:

$$\ln A_{Al_4C_4} + 3\ln A_{Si} = -\Delta G_3^{\theta} / RT$$
(14.)

The main factors affecting the generation of Al_4C_3 are temperature T and the activity of A_{Si} . The enhancing of Si activity can obviously suppress the formation of harmful interface reaction product Al_4C_3 [17]. At a certain temperature, $\ln A_{Al_4C_3}$ and $\ln A_{Si}$ expressed as the linear relationship in double commonly logarithmic coordinates [14].

In the decomposition reaction 10 of SiC, it is satisfied by the equilibrium:

$$\ln A_{\rm C} + \ln A_{\rm Si} = -\Delta G_{10}^{\theta} / RT \tag{15.}$$

Fig. 3 is the magnitude of $A_C \times A_{Si}$ at the different temperatures, which is corresponding to the value of $A_{Si}asA_C = 1$, the value of $A_C asA_{Si} = 1$, or the minimum A_{Si} or A_C in SiC at different temperatures.

In the Equation (11), the equilibrium formula of $A_{Al_4C_3}$ and A_C can be expressed as:

$$3\ln A_{\rm C} + 4\ln A_{\rm Al} - \ln A_{\rm Al_4C_3} = -\Delta G_{11}^{\theta} / RT$$
(16.)

When A_{Al} is regarded as 1, $A_{Al_4C_3}$ and A_C can be expressed as the linear relationship in the double commonly logarithmic coordinates. When the silicon is rich in the interface, the minimum of A_C obtained by the Equation (15) issubstituted into the Equation (16), and then it can get the minimum activity of a stable Al_4C_3 in the interface. In **Fig.4** it is shown that the lines AA' is represented by the linear relationship of $A_{Al_4C_3}$ and A_{Si} determined by the Equation (6) in the double commonly logarithmic coordinates as the temperature is ranged from 700K to 1000K. The zero point is represented by the minimum $A_{Al_4C_3}$ when a stable Al_4C_3 forms in the corresponding temperature determined by the Equation (16). Similarly, it represents the maximum value A_{Si}^0 for $A_{Al_4C_3}^0$ and A_{Si} .

Fig. 3 The magnitude of $A_C \times A_{Si}$ with different temperatures

Fig. 4 The relationship of $\ln A_{Al_4C_3}$ and $\ln A_{Si}$ at the equilibrium temperatures

In the interfaces, there are several possible reaction models in the following.

- I. When A_{A1} is less than a certain value of A_{A1}^0 and A_{Mg} is more than a certain value of A_{Mg}^0 , Mg and Al are diffused to the interface of SiO₂and the liquid; Mg and Al are adsorbed and forms the MgO, Al₂O₃ and Si in the interface. Finally, MgO, Al₂O₃ are transformed into MgAl₂O₄, it will be desorbed from the interface.
- II. When A_{Al} is greater than a certain value of A_{Al}^1 and A_{Mg} is less than a certain value of A_{Mg}^0 , Mg and Al are diffused to the interface of SiO₂ and the liquid. Mg and Al are formed into MgAl₂O₄, and Si will be desorbed from the interface.
- III. When A_{Al} is greater than a certain value of A_{Al}^1 and A_{Mg} is less than a given value of A_{Mg}^1 , Mg and Al are diffused to the interface of SiO₂ and the liquid. Mg is adsorbed and reacted into MgO and Si in the interface, and then MgO and Al are reacted into MgAl₂O₄.
- IV. When A_{Al} is less than a certain value of A_{Al}^0 and A_{Mg} is more than a given value of A_{Mg}^0 , Mg and Al are diffused to the interface of SiO₂ and the liquid. Al is adsorbed and reacted into Al₂O₃ and Si in the interface, then Al₂O₃ and Mg are reacted into MgAl₂O₄ and it will be desorbed from the interface.
- V. When the value of A_{Al} is between A_{Al}^0 and A_{Al}^1 , A_{Mg} is greater than a certain value of A_{Mg}^0 , Mg and Al are diffused to the interface of SiO₂ and the liquid. Mg and Al are adsorbed and reacted into MgO, Al₂O₃ and Si in the interface, and then MgO and Al will reacted intoMgAl₂O₄.
- VI. When the value of A_{Al} is between A_{Al}^0 and A_{Al}^1 , A_{Mg} is less than a certain value A_{Mg}^0 , Mg and Al are diffused to the interface of SiO₂ and the liquid. Mg and Al are reacted into MgAl₂O₄ and Si in the interface and will desorb from the interface. At the same time, Al is adsorbed and reacted into MgO and Si.

The MgAl₂O₄ spinel phase can improve the bonding strength of the interface characteristics of Al-Mg-Si/SiC composites [18]. The interfacial reaction at the SiC/Al interface involved with the elements Mg, Al and O can be identified as MgAl₂O₄ spinel [11,19]. The case of oxidized SiC particles covered with a layer of SiO₂ is of advantage to control the formation of A1₄C₃ [20]. In the solidification processing of SiC/Al composites, SiO₂generated by oxidative treatment of SiC surface will reacted into the spinel, Si, oxidation of Aland Mg, which can not only improve interfacial wettability of the SiC/Mg composite, but also the formation of Si can suppress the

generation of Al_4C_3 . Because the percentage of Si increases with the formation of Mg, Al oxide and spinel, it is difficult for the related react of Mg and Al in the interface.

4 Conclusions

- 1) When a stable Al_3C_4 forms in the interface, which is significantly dependent onA_{Si} . There is a critical value of A_{Si}^0 . A stable Al_3C_4 cannot formed when A_{Si} is more than A_{Si}^0 . A_{Si}^0 is not a constant, it increases with the temperature.
- 2) The mass fraction and distribution of SiO_2 in the interface have directly effects on the reactions of SiO_2 with Mg and Al. The reactions process and the ratio of products are greater affected by the interface activity of Mg and Al. There is a critical value of A_{Mg}^0, A_{Al}^0 and A_{Al}^1 , which increases with the temperature.
- 3) When the mass fraction of Si in the interface is greater than a critical value, there is no interfacial reaction at a certain temperature.

References

- B. S. Ünlü: Materials & Design, Vol. 29, No. 10, 2008, p. 2002-2008, doi: 10.1016/j.matdes.2008.04.014
- [2] A. Matin, F. F. Saniee, H. R. Abedi: Materials Science and Engineering A, Vol. 33, No. 14, 1998, p. 3491-3503, doi: 10.1016/j.msea.2014.11.050
- [3] M. Esmaily, N. Mortazavi, J.E. Svensson: Composites Part B, Vol. 94, No. 1, 2016, p. 176-189, doi: 10.1016/j.compositesb.2016.02.019
- [4] S. Huang, B. Ji, J. Zhou, H. Li, J. Zhu: Nuclear Instruments and Methods in Physics Research A, Vol. 832, No. 1, 2016, p. 184-186, doi: 10.1016/j.nima.2016.06.108
- [5] G. J. He, W. Z. Li: Acta Materiae Compositae Sinica, Vol. 30, 2013, No. 2, p. 105-110, doi: 10.13801/j.cnki.fhclxb.2013.02.015
- [6] Y. Liu, L. P. Chen, Q. Zhou: Special Casting & Nonferrous Alloys, Vol. 34, 2014, No. 10, p. 1094-1098
- [7] W. N. Liu, H. Yu, Z. F. Xu: Foundry, Vol. 57, 2008, No. 10, p. 461-469
- [8] R. Mitra, V.S. Chalapathi Rao, R. Maiti, M. Chakraborty: Materials Science and Engineering A, Vol. 379, No. 1-2, 2004, p. 391-400, doi: 10.1016/j.msea.2004.03.024
- [9] J. C. Lee, H. I. Lee, J. P. Ahn, J. H. Shim, Z. Shi: Metallurgical and Materials Transactions A, Vol. 32, No. 6, 2001, p. 1541-1550
- [10] T. P. D. Rajan, R.M. Pillai, B.C. Pai: Journal of Materials Science, Vol. 33, No. 14, 1998, p. 3491-3503, doi: 10.1023/A:1004674822751
- [11]Z. P. Luo: Acta Materialia, Vol. 54, No. 1, 2006, p. 47-58, doi: 10.1016/j.actamat.2005.08.022
- [12] Y. L. Shen, J.J. Williams, G. Piotrowski, N. Chawla, Y. L. Guo: Acta Materialia, Vol. 49, No. 16, 2001, p. 3219-3229, doi: 10.1016/S1359-6454(01)00226-9
- [13] J. Y. Liang, Y. C. Che: Handbook of Inorganic Thermodynamic (in Chinese), the Northeastern University Press, 1993
- [14] G. L. Fang, J. Li, Z. C. Yang: Ningxia Engineering Technology, Vol. 6, No. 1, 2007, p. 76-79
- [15] A. Munitz, M. Metzger, R. Mehrabian: Metallurgical and Materials Transactions A, Vol. 10, No. 10, 1979, p. 1491-1497, doi: 10.1007/BF02812014
- [16]Z. Q. Li: Journal of Nanjing University of Aeronautics & Astronautics, Vol. 34, 2002, No. 3, p. 240-244, doi: 10.3969/j.issn.1005-2615.2002.03.009

- [17] B. Xie, X. G. Wang: Rare Metal Materials and Engineering, Vol. 44, No. 5, 2015, p. 1057-1061, doi: 10.1016/S1875-5372(15)30066-7
- [18] B. Li, B. H. Luo, K. J. He, L. Z. Zeng: Journal of Alloys and Compounds, Vol. 649, 2015, p. 495-499, doi: 10.1016/j.jallcom.2015.07.033
- [19] N. P. Cheng, C. M. Li, Q. Hui, Z. Q. Chen: Materials Science and Engineering A, Vol. 517, No. 1-2, 2009, p. 249-256, doi: 10.1016/j.msea.2009.04.005
- [20] L. Salvo, G. L'espérance, M. Suéry: Materials Science and Engineering A, Vol. 177, No. 1-2, 1994, p. 173-183, doi: 10.1016/0921-5093(94)90489-8

Acknowledgements

Authors are grateful for the support by the National Natural Science Foundation of China under Grant No. 51561001 and the Prospective Project of Science and Technology Bureau of Jiangsu Province, P. R. China under grant BY2016029-19, BY2016029-10 and BY2016029-03.