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Abstract  

The subject of this paper is the analysis of crack initiation and propagation in barium titanate 

ceramic using the boundary element method. In micro-mechanical analyses, it is very important 

to have information on the real microstructure of a material. A barium titanate pellet was 

prepared using a solid-state technique. The boundary element method is used so that it can be 

combined with three different grain boundary formulations for the investigation of micro-

mechanics as well as crack initiation and propagation in a piezoelectric actuator. In order to 

develop a numerical programming algorithm, suitable models of polycrystalline aggregate and 

representative volume elements have been prepared for boundary element analysis.  
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1 Introduction  

A The boundary element method (BEM) is one of the favourite optimised numerical 

computational methods used by scientists in many areas of engineering and science including 

fracture mechanics, fluid mechanics, and geology. In order to use the boundary element method, 

one only needs to fit the boundary of the system without calculation of parameters inside the 

solid body analysed, so the dimension of the problem can decrease and the size of the algebraic 

equations can be considerably smaller than the finite element equation [1, 2].  

In the area of fracture mechanics and mechanical engineering, some researchers have utilised the 

boundary element method [3, 4], the Voronoi tesselation method [5] or the finite element 

method [6, 7]. These methods are very suitable for use in determining the behaviour of a solid 

body which contains several cracks and holes. It is worth mentioning that both finite and infinite 

bodies can be studied via the BEM. In order to use this method, one must pay attention to the 

fact that the traction fundamental solution and displacement fundamental solution for isotropic 

bodies are different to those for anisotropic bodies. This is the most important fact that 

researchers have to consider before using the BEM [8, 9] or discrete element method [10] for 

investigations. The application of the boundary element method in micromechanics and 

multiscale modelling has been studied by a number of researchers [11-13]. In some of these 

studies, researchers only modelled materials at micro scale and with the cohesive law, averaging 

theory or nonlocal theories were not used. Several researchers have utilised some basic concepts 
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of micro mechanical analysis such as representative volume element and grain boundaries in 

their studies [14]. 

In this paper the analysis of crack initiation and propagation in barium titanate ceramic is 

analysed using the boundary element method. The boundaries of grains were compared to the 

real microstructure of barium titanate ceramic. 
 
 

2 Experiment 

The barium titanate pellet was prepared using the solid-state method [15, 16]. The barium 

titanate powder was manufactured from 288.15 g of TiO2 (99% purity, Kronos) and 711.85 g of 

BaCO3 (99.5% purity, Chempur). The three calcinations of BaTiO3 powder were carried out in 

an electric furnace. In order to improve mouldability, the barium titanate powder thus obtained 

was granulated. BaTiO3 powder with a weight of 3962 g was milled with deionised water in the 

proportion 1:1 in a porcelain mill with a 3 kg ball for 30 minutes. The granulation process was 

performed in a spray drier (Niro). The pellets were pre-formed by filling the mould for uniaxial 

pressing with an external diameter of 11.5 mm with BaTiO3 granulate with a weight of 0.6 g 

followed by uniaxial pressing under a pressure of 1 MPa. The microstructure of the BaTiO3 

powder has been evaluated using a scanning electron microscope SEM/HITACHI S-

3400N/2007. 
 
 

3 Theoretical background 

In this paper both the macro and micro scales are analysed. Modelling, often on a macro-scale, is 

based on micro-continuum theories; however, it is necessary to pay attention to the point that in 

order to preserve the integrity of the material, no constitutive law or damage should be 

considered. In the next step, by applying the boundary condition on a representative volume 

element (RVE) which was obtained from calculations at macro scale, the cohesive laws can be 

reevaluated for the modelling of crack initiation and propagation in the RVE. The RVE is a 

small volume of microstructure that has the general characteristics of the whole microstructure 

such as the volume fraction, morphology and randomness of the phases and over which 

modelling of specific characteristics is carried out [17]. All information from the micro-scale can 

be sent to the macro level to modify the results and model the next steps. In Fig. 1 it is shown 

that the calculation of the micro-scale is able to provide boundary conditions for the micro-scale, 

on the other hand, the micro scale will provide some information by which the constitutive law 

can be modified and possible damage can also be modelled for the next steps.  
 

 
Fig. 1 Schematic view of multi-scale tension modelling 
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4 Application of BEM at macro scale 

In order to perform the procedure for multiscale modelling, the existence of micro-cracks which 

can appear due to a pre-existing manufacturing process or can be created during external loads, 

results in a decrease in the materials’ stiffness in macro and meso scale. If we consider the 

boundary element method as a means for solving this problem, nonlinear behaviour may occur 

[18]. Thus, it is necessary for the macro scale to be simulated via a nonlinear boundary element 

formulation in order to exploit the local nonlinear behaviour of the material. The boundary 

element formulation is as follows [19]: 
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jk  is decremental stress which is posed by the micromechanical solution in order to treat the 

local softening of stress in macroscale. Eijk is a fundamental solution for the initial stress which 

can be defined as a stress at point X for unit point load which is applied at point Z0. In the 

literature, there are many references which provide the Ejk (X, Z0) for isotropic materials, 

however, in this paper, piezoelectric materials are considered as anisotropic both in macroscale 

and at microscopic scale and according to experience, there is no information in the literature to 

apply this formulation to anisotropic materials. So, in order to achieve accurate results, it is 

essential to define the fundamental solution for the stress for anisotropic materials. These 

equations define the stress and displacement using Stroh formulations: 
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(2.) 

By differentiation of u  with respect to kz , the strain can be defined as: 
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(3.) 

In order to define the fundamental solution for strain, we need to consider an infinite anisotropic 

plate under a concentrated force applied at ),( 02010 xxZ  as shown in Fig. 2. By considering the 

following boundary condition, the elastic solution of this problem will be considered as the 

Green function for the fundamental solution of the boundary element method. 
 

 
Fig. 2 An infinite anisotropic plate under a concentrated force applied at ),( 02010 xxZ  
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The boundary condition can be written as: 
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Now to solve Eq. (2.), it is critical to allocate a function to f. In the literature, the following 

function is proposed for f: 
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So, the displacement and stress function can be written as: 
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Now, by applying the boundary condition to a model, Eq. (7.) can be represented as: 
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By using the orthogonality relation among eigenvectors 
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5 Results and discussion 

As is obvious in Fig. 3, the numerical algorithms used act in a very efficient manner. Not only 

are the distances between the grains eliminated, but also in the corners, the grains have the same 

coordinates and this will increase the accuracy of the numerical models. Fig. 4 shows crack 

initiation and propagation in the artificial grain used by Verhoosel and Gutiérrez [20]. In this 

example, uniform traction was chosen as the boundary condition. It can be concluded from this 

figure that the path of crack initiation which is predicted in the current work via the boundary 

element method and the introduction of cohesive law is almost the same as the one developed by 

Verhoosel and Gutiérrez [20]. 

Some small differences can be seen which are due to the different cohesive law along with the 

transgranular fracture that was predicted in [20]. Several assumptions are made to model the 

grain boundary in micro-scale. In the first step, before the cracks occur, the traction equilibrium 

and displacement compatibility are the governing equations. When the micro-crack starts to be 

initiated, the mixed mode potential based cohesive law is applied to the model grain boundaries 

and the intergranular crack nucleation and evolution is investigated. 
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Fig. 3 Discretised grain boundaries in two different views, (a) larger view, (b) zoomed 

view of grain number 20 [20] 
 
 

  
Fig. 4 The comparison between (a) the grain boundary algorithm developed and (b) 

Verhoosel and Gutiérrez [20] in predicting crack initiation and propagation 
 
 

Upon interface failure, a frictional law is utilised in order to study separation, sliding or sticking 

between the micro-crack surfaces. Moreover, the model that was developed was validated by 

comparing the results with the literature. The influence of different parameters such as the 

piezoelectric effect, grain size and morphology, model domain, pre-excited cracks, metallic 

interface and frictional coefficient have been studied. The results indicate the efficiency of the 

proposed micro-mechanical model in the study of the advantages and disadvantages of the 

multilayer actuator. 
 
 

Summary and conclusions 

The structural model of RVE was obtained based on the microstructure of the BaTiO3 ceramic 

that was prepared. The grain boundaries were divided into three zones, namely the undamaged 

zone, the cohesive zone and the failure zone and a suitable formulation for each zone was 

developed in order to study the behaviour of the RVE. The adaptive method developed for the 

investigation of the intergranular micro-fracture and micro-mechanical analysis of a 

homogenous and multilayer actuator was found to be a suitable algorithm by comparing some of 

the results with literature. The results of numerical analyses indicated that the type of load 

applied and the boundary conditions influence the fracture path of micro-structures which 
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indicates that in different practical applications the type of external load must be considered to 

be an important factor. It can also be concluded that the piezoelectric coupling has a significant 

influence on the fracture criteria of aggregates which means that when considering the 

piezoelectricity and for a specified amount of strain, the polycrystalline aggregate without 

piezoelectric effect may experience more stress. 
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