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Abstract  

The examination of the high temperature plastic properties of metallic materials was realised by 

the torsion plastometer SETARAM or by the compression plastometer DIL805A/D. The brass 

CuZn30 was used as the test material. Peak stress detection was performed for two independent 

variables, temperature and velocity of deformation. The set experimental plan forms the test 

array 54, i.e. five temperatures 650, 700, 750, 800, 850 °C and four strain rates of 0.5, 2.5, 12.5 

and 25 s-1. It was necessary to evaluate measured data and to determine the mathematical model 

of the peak stress. For this aim, the Garofalo equation was used. This equation contains 4 

material constants. The currently method used to determine the material constants takes a 

relatively long time and requires a number of auxiliary calculations. In this method, nonlinear 

regression is often used, which requires the initial estimation of parameters. The article presents 

a mathematical analysis and a simple methodology for calculating the material constants of the 

Garofalo equation. A general linear regression is used for the calculation that does not require an 

initial estimate of the material constants. The numerical calculation of material constants is 

documented on the measured peak stress data. 
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1 Introduction 

The Garofalo empirical equation [1, 2] is used to describe the high temperature deformation, 

which describes the strain rate in relation to the flow stress and the absolute temperature 
 

   









RT

Q
exp

n
σαsinhC p

   (1.) 
 

kde ´ [s-1] – strain rate  

T [K] – absolute temperature  

p [MPa] – flow stress  

Q [J.mol-1] – activation energy of deformation  

R [J.K-1.mol-1] – universal gas constant 

n [–] – material constant  

C [s-1] – material constant  

 [MPa-1] – material constant  
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Extensive analysis of the Garofalo equation (1) and the flow of material has been carried out by 

several authors [3, 4, 5]. Material constants are determined from the measured actual stress 

values, which are defined by the temperature and the strain rate. [6, 7]. Different mathematical 

methods and nonlinear regression [11, 12] are used for searching constants n, Q a C [8, 9, 10]. 

Calculation of material constant The Eq. (1) allows a description of strain stress 

dependencies for specific thermodynamic conditions of forming. For high strain temperatures 

and low strain rates, the condition 1σα   applies, (the data in row of temperature 850 °C in 

Table 4), therefore Eq. (1) can be reduced to the form [13] 
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For condition 1 , (the data in row of temperature 650 °C in Table 4), that is fulfilled when 

forming at lower temperatures and higher strain rates, it is possible to reduce Eq. (1) to the form 

[13] 
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while 
 

1nαβ 
   (4.) 

 

The following procedure is used in [3] to determine the material constant  . The constants n1 

and  are calculated from Eq. (2) and Eq. (3). For this aim, these equations have been 

transformed to the form of a line equation by using the logarithm 
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Fig. 1 The line directive determines the constant n1 = 5,3420 
 
 

The data in the row of temperature 850 °C in Table 4 were used to calculate the constant n1 of 

Eq. (5). Similarly, the data in row of temperature 650 °C in Table 4 were used to calculate the 
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constant  of Eq. (6) [13, 14]. Because the data at constant temperature were always used, the 

first two members on the right of equations (5) and (6) are also the constants. Eq. (5) expresses 

the dependence σ lnln  and Eq. (6) the dependence σln  . The graphical representation of 

these dependencies is in Fig. 1 and Fig. 2. Obtained values n1 and  allow calculating the 

material constant  for CuZn30 brass using the Eq. (4) 
 

1

1

MPa  0.00927
5.342

0.0495

n

β
α 

   (7.) 
 

 
Fig. 2 The line directive determines the constant  = 0,0495 
 
 

Calculation of material constant n. If we use the logarithm operation on the Eq. (1), we get 

linearized form of this equation 
 

 pσαsinhln n
RT

Q
Cln ln 

   (8.) 

In Eq. (8) we use transformations  lny and  pσαsinhln x  . At the same temperature T, the 

expression Q/RTCln y0   is constant. Then the form of Eq. (8) will be 
 

constT0 xnyy



   (9.) 

 

where material constant n means gradient of the line (9). For constant temperatures Eq. (9) 

represents a set of lines. The graph of the lines will be view in the coordinates ln ´– ln sin(.p) 

for points with the same temperature [15]. Fig. 3 shows five lines for our five temperatures. The 

gradients of these lines represent the material constant n for a corresponding temperature. The 

values of this material constant n are calculated in Table 1 for every line. The resulting value of 

the material constant n for the whole test array is given by the arithmetic mean 
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Table 1 Line parameters (constant n) shown on the Fig. 3 
i ti (°C) ni (–) R2 

1 650 3.9724 0.9997 

2 700 3.9798 0.9905 

3 750 3.9515 0.9385 

4 800 4.9117 0.9608 

5 850 5.0242 0.9231 

Sum – 21.8396 – 



Acta Metallurgica Slovaca, Vol. 23, 2017, No. 4, p. 319-329                                                                                         322  

 

DOI 10.12776/ams.v23i4.1017 p-ISSN 1335-1532 

 e-ISSN 1338-1156 
 

 
Fig. 3 Line plots at different temperatures determining material constant n [15] 
 
 

Calculation of material constant Q. The material constant Q represents the activation energy of 

the deformation. To determine the value of this material constant we use Eq. (8) [16, 17].   This 

method is highly demanding for the data processing time and the determination of the material 

constant Q [18, 19, 20]. In Eq. (8) we introduce transformations  pσαsinhln y   

and /T1000x  . Expression  /nCln lny0    means y-intercept of the line, because the 

strain rate is for the corresponding line constant. Eq. (8) takes a form [3, 15] 
 

const0 xkyy
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
  (10.) 

 

where 
 

nR

Q
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 (11.) 
 

The graph of the line will be shown in the coordinates   /T1000σαsinhln p   in points that 

have the same strain rate [15]. Fig. 4 shows four lines for four used strain rates. The values of 

gradients ki of every line are shown in Table 2. The resulting value of the constant k for the 

whole test array is given by the arithmetic mean  
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Based on Eq. (11) and after taking into account the factor 1000/T [21], material constant Q can 

be calculated 
 

346 1808.3144.36794.96621000Rnk1000Q   J.mol-1 
 

Table 2 Line parameters (constant k) shown on the Fig. 4  

i ´i (s-1) ki (K) R2 

1 0.5 3.8066 0.9747 

2 2.5 5.4007 0.9796 

3 12.5 4.9652 0.9865 

4 25 5.6923 0.9902 

Sum –   19.8648 – 
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Fig. 4 Line plots at different strain rate determining material constant Q [15] 
 
 

Calculation of material constant C. Material constant C is the last constant which appears in 

Garofalo equation. Eq. (1) can be written in the form 
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The left side of the Eq. (12) represents Zener Hollomon parameter Z: 
 











RT

Q
expZ 

 (13.) 
 

From Eq. (12) and (13) is made next equation 
 

 pσαsinhln nCln ln Z   (14.) 

 

 
Fig. 5 Determination of constant C by using Zener-Hollomon parameter [15] 
 
 

Because the activation energy Q has already been calculated, it is possible to calculate 

Zener Hollomon parameter from Eq. (13). In Eq. (14) we introduce transformations ln Zy   

and  pσαsinhln x  . The expression Cln y0   means natural logarithm of material constant C. 

Now Eq. (14) has the form 
 

xnyy 0   (15.) 

 

where material constant C signifies y-intercept y0 of the line. Eq. (15) represents one line for 

whole set of measured values. The graph of the line will be shown in the coordinates 

 pσαsinhln ln Z   (Fig. 5), from which it results 
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-110 s 103.216034C   a   24.194Cln  . 
 

For calculating the constants of Garofalo equation are used different mathematical methods, 

most often nonlinear regression. The new solution consists in the use of general linear 

regression. 
 
 

2 Experimental Material and Methods 

The CuZn30 brass was used for high temperature plastic deformation tests [15]. This brass 

belongs to the alpha brasses, which have good cold formability. It is the brass used in the 

munitions industry. The test material was in the form of bars with a diameter  12 mm. The 

chemical composition of this brass is given in Table 3 and corresponds to the German standard 

DIN 17 660 w.n. 2.0265. Courses of stress in dependence on deformation were obtained on a 

torsion plastometer SETARAM. The dimensions of the test sample are given in Fig. 6. In order 

to use the Garofalo equation for the evaluation of the tests, it is necessary to follow the 

elaborated test plan. The test plan is represented by array 5t4´ (5 temperatures  4 strain 

rates). Every element of the array signifies one measurement at defined temperature and 

deformation rate. 
 

Table 3 Chemical composition of CuZn30 brass (wt. %) 

Element Cu Pb Sn As Ni Mn Al Si 

Content 70.39 0.0004 0.0042 0.0001 0.0022 0.0003 0.0012 0.0002 

Element Fe Sb Bi Cr Cd Ag P Zn 

Content 0.023 0.003 0.0001 0.0001 0.0001 0.0001 0.0002 balance 
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Variables t1 to t5 represent temperatures 850, 800, 750, 700 and 650 °C. Variables ´1 to ´4 

mean strain rates of 0.5, 2.5, 12.5 and 25 s-1. The matrix of tests represents 54=20 

measurements. Measured values of peak stress resulting from courses of stress in dependence on 

deformation in accordance with the test plan are shown in Table 4.  
 

 
Fig. 6 Test specimen for hot torsion tests 
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Table 4 Peak stress of CuZn30 brass (MPa) 

  ́(s-1)     

t (°C) 
0.5 2.5 12.5 25 

850 33.38 37.26  59.68  61.21 

800 42.53 49.68  75.05  81.65 

750 48.17 55.56  93.90 101.61 

700 53.74 70.69 104.61 119.58 

650 69.95 99.58 133.37 148.82 
 
 

3 Results and Discussion 

New calculation methodology of material constant . In Eq. (5) and Eq. (6) the constants n1 

and  mean the gradient of line. To calculate material constant  it is not necessary to obtain 

complete regression equations according to Fig. 1 a Fig. 2. It is sufficient to calculate only the 

gradients of lines that represent constants n1 a . According to the theory of mathematical 

statistics, we define them as follows 
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where s represents the number of strain rates at which the strain stress was measured (in Table 4 

s=4). Numeric value of material constant  is determined by Eq. (4), using values calculated 

from Eq. (16) and Eq. (17). 

New calculation methodology of material constant n, Q a C. Calculation procedure of material 

constants n, Q and C is as follows, use logarithm on Eq. (1) and adjust it 
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Q
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Introduce next transformations in Eq. (18)  
 

 pσαsinhln y   (19.) 

 

    lnf1  (20.) 

 
T

1
Tf2   (21.) 

 

and constants in Eq. (18) replace with substitutions 
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then Eq. (18) will take shape 
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 (25.) 

 

Unknown constants b0, b1 and b2 in Eq. (25) will be obtain by general linear regression, because 

functions f1 and f2 are known, defined by Eq. (20) and Eq. (21). The determinant equations have 

the following form 
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where p represents total number of measurements (in Table 4 p=20). Eq. (26) to Eq. (28) are a 

system of three linear equations of three unknowns b0, b1 and b2. After solving the system of 

equations, material constants will be calculated by Eq. (22) to Eq. (24) 
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Example of calculation of material constants: n, Q and C. For calculating the particular sums in 

Eq. (26) to Eq. (28) we use data from Table 4. The numerical form of these equations is as 

follows 
 

             6.521303b0.019642b29.838740b20 210   (32.) 

 

0.502198   b0.029304b90.302542b29.838740 210 
 (33.) 



Acta Metallurgica Slovaca, Vol. 23, 2017, No. 4, p. 319-329                                                                                         327  

 

DOI 10.12776/ams.v23i4.1017 p-ISSN 1335-1532 

 e-ISSN 1338-1156 
 

  
0.005942b0.000019b0.029304   b0.019642 210 

 (34.) 
 

The system of three linear equations of three unknowns we recommend to solve using the 

determinants, through Cramer's rule 
 

b0=–5.5367033 

b1=0.2234698 

b2=4966.2287 

Material constants n, Q and C are calculated from Eq. (29) to Eq. (31): 
 

n=4.4749 

C=5.7558.1010 s-1 

Q=184764 J.mol-1 
 

Values of peak stress will be determine from the Garofalo equation (1) that should be adjust for 

direct calculation of stress 
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Based on the specified material constants n, C, Q, and , the values of stress p are calculated by 

Eq. (35). The rate of correlation between the measured and calculated values of peak stress gives 

the correlation coefficient (R2=0,97998). The comparison of the calculated material constants of 

the Garofalo equation, according to the old and new methodology is given in Table 5. The use 

of results obtained by plastometer in metal forming processes is documented by several 

publications [22, 23]. A special application in the rolling process is given in the publication [24]. 
 
 

4 Conclusions 

The results of determination of material constants , n, Q and C obtained by new methodology 

are in good agreement with the old methodology. The main benefit of the new method of 

calculating the material constants for the Garofalo equation lies in its simplicity and the speed of 

the calculation. Material constants are calculated directly as their final values 

 The new methodology for calculating the constants of the Garofalo equation does not 

require an initial estimate of constants as nonlinear regression  

 The calculation of material constants does not require complicated software as for 

nonlinear regression 

 The new methodology does not require to calculate line equations, see on Fig. 3 to Fig. 

5 

 The new methodology allows the calculation of constants in a fully automatic mode 

 The Garofalo equation was linearized using logarithm what allows to calculate its 

constants through general linear regression 

 The new methodology is suitable for the evaluation of the measured data by the torsion 

plastometer SETARAM and also by the compression plastometer DIL805A/D.  
 
 

References 

[1] P. Garofalo: Transactions of the Metallurgical Society of AIME, Vol. 227, 1963, p. 351-355 



Acta Metallurgica Slovaca, Vol. 23, 2017, No. 4, p. 319-329                                                                                         328  

 

DOI 10.12776/ams.v23i4.1017 p-ISSN 1335-1532 

 e-ISSN 1338-1156 
 

[2] C. M. Sellars, W. J. Mc Tegart: International Metallurgical Review, Vol. 17, 1972, p. 1-24, 

DOI: 10.1179/imtlr.1972.17.1.1  

[3] E.M. Mielnik: Metalworking Science and Engineering, McGraw-Hill, New York, NY, 

USA, 1991 

[4] S.H. Talbert, B. Avitzur: Elementary Mechanics of Plastic Flow in Metal Forming, John 

Wiley & Sons, New York, 1996 

[5] S. Spigarelli, M. Cabibbo, E. Evangelista, J. Bidulská: Journal of Materials Science, Vol. 

38, 2003, No. 1, p. 81-88, DOI: 10.1023/A:1021161715742 

[6] J. Bidulská, I. Pokorný, T. Kvačkaj, R. Bidulský, M. Actis Grande: High Temperature 

Materials and Processes, Vol. 28, 2009, No. 5, p. 315-321, DOI: 

10.1515/HTMP.2009.28.5.315 

[7] T. Kvačkaj, I. Pokorný: Metalurgija, Vol. 34, No. 4, 1995, p. 145-150 

[8] T. Kubina, J. Kliber, L. Kuncicka, M. Berkova, J. Horsinka, J. Boruta: 

Metalurgija, Vol. 52,  2013, No. 3, p. 325-328 

[9] I. Farup, J.M. Drezet, A. Mo, T. Iveland: Journal of Thermal Stresses, Vol. 23, 2000, p. 47-

58, DOI: 10.1080/014957300280551 

[10] S. Spigarelli, E. Evangelista, H. J. McQueen: Scripta Materialia, Vol. 49, 2003, p. 179–183, 

DOI: 10.1016/S1359-6462(03)00206-9 

[11] J. Bidulská et al..: Kovove Materialy, Vol. 46, 2008, No. 3, p. 151-155 

[12] J. Bidulská, T. Kvačkaj, R. Bidulský, M. Cabibbo, E. Evangelista: Metalurgija, Vol. 46, 

2007, No. 3, p. 157-159 

[13] A. Fedoriková, T. Kvačkaj, R. Kočiško, R. Bidulský, P. Petroušek: Acta Physica Polonica 

A, Vol. 131, 2017, No. 5, p. 1340–1343, DOI: 10.12693/APhysPolA.131.1340 

[14] El Mehtedi, M., Spigarelli, S.: Acta Physica Polonica A, Vol. 128, No. 4, 2015, p. 722-725, 

DOI: 10.12693/APhysPolA.128.722 

[15] F. Garofalo: Fundamentals OF Creep and Creep-Rupture in Metals. The Macmillan 

Company, New York, 1965 

[16] T. Kvačkaj, A. Kováčová, R. Kočiško: Acta Physica Polonica A, Vol. 128, 2015, No. 4, p. 

689–692, DOI: 10.12693/APhysPolA.128.689 

[17] R. Pernis: The Theory and Technology of Cups Production, TnUAD Trenčín, Trenčín, 2009, 

(in Slovak) 

[18] J. Castellanos, I. Rieiro, M. Carsi, J. Muoz, O.A. Ruano: Journal of Achievements in 

Materials and Manufacturing Engineering, Vol. 19, 2006, No. 2, p. 56-63 

[19] F. Drastík, J. Elfmark: Plastometers and forming of metals. SNTL, Praha, 1977, (in Czech) 

[20] T. Kubina, A. Bořuta, M. Longauerová, J. Bořuta: Materials Science Forum, Vol. 782, 

2014, p. 51–56, DOI: 10.4028/www.scientific.net/MSF.782.51 

[21] T. Kvačkaj, R. Kočiško, A. Kováčová: Chemické listy, Vol. 106, 2012, No. s3, p. s464–

s467 

[22] K. Chadha, D. Shahriari, M. Jahazi: La Metallurgia Italiana, 2016, No. 4, p. 5–12 

[23] A. Hensel, T. Spittel: The Force and Energy Consumption in Metal Forming Processes, 

Deutscher Verlag für Grundstoffindustrie, Leipzig, 1978, (in German) 

[24] W.F. Hosford, R.M. Caddell: Metal forming – Mechanics and Metallurgy. Englewood 

Cliffs, Prentice-Hall, 1983  

[25] T.Z. Blazynski: Plasticity and modern Metal-Forming Technology. Elsevier Science 

Publishers, Barking-Essex, 1989 

[26] S. Rusz, I. Schindler, T. Kubina, J. Bořuta: Acta Metallurgica Slovaca, Vol. 12, 2006, No. 

4, p. 477–483 



Acta Metallurgica Slovaca, Vol. 23, 2017, No. 4, p. 319-329                                                                                         329  

 

DOI 10.12776/ams.v23i4.1017 p-ISSN 1335-1532 

 e-ISSN 1338-1156 
 

Acknowledgements 

Special thanks to my former colleague, Dr. Erika Hujová, who gladly translated this article from 

Slovak to English.  
 

 


