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Abstract 

While in operation structural elements may have cracks, which usually grow up to critical size 

due to cyclic loading and the component is likely to be destroyed. Therefore, it is important to 

study the process of fatigue failure of structural materials. The aim of this study was to evaluate 

the lifetime of structural elements, taking into account the achieved level of material damage, 

and to predict the fatigue crack growth (FCG) rate in an aluminium D16chT alloy under regular 

loading by neural network (NN). The results obtained by the authors are in good agreement with 

the experimental data. 
 

Keywords: fatigue crack growth, stress intensity factor, neural network, lifetime, data science 
 
 

1 Introduction 

Machine learning (ML) is a part of data science. ML recognises patterns effectively [1]. One of 

its approaches is neural network (NN) [2]. Neural network can answer a lot of open questions in 

mechanics. In particular, NN can predict the lifetime of structural elements. 

To assess the lifetime and fatigue crack growth prediction, it is important to consider the 

properties of the material and the scatter of its parameters. Many existing models describe 

fatigue crack growth rate deterministically [3  8]. Also, a number of probabilistic approaches 

enable to estimate the probability of failure of certain structural elements or to build a 

distribution function of the final crack depth [9  12]. Fatigue crack growth rate can be 

presented as a function of stress intensity factor (SIF) and stress ratio R. Therefore, it is a 

parameter in a number of models of fatigue crack growth, namely crack closure model [13], 

residual compressive stress based model [14, 15], a model with two driving force parameters 

[16, 17]. The answers to many questions, that are interesting to mechanics, can be obtained 

numerically. For instance, fatigue crack growth rate and parameters of the material were 

estimated by NN [18, 19]. 

The lifetime of a structural element is the number of cycles before its failure. The length of the 

crack a depends on the corresponding number of loading cycles N at the moment it was 

measured. The fatigue crack growth rate da/dN can be presented as a function of SIF range K 

and the stress ratio R of the loading cycle. The model, which describes the fatigue crack growth 

(FCG) rate, can be set by the equation: 
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where: N is the number of loading cycles; a is the length of a crack;  ,f K R is a function of 

two variables; K = Kmax − Kmin, where: Kmin, Kmax are the minimum and maximum stress 

intensity factors of the loading cycle, respectively; R = min/max, where min and max  are the 

minimum and maximum stresses of loading cycle, respectively. 

In general,  

K a Y      (2.) 

where: Y is the correction function, which depends on the geometry of the structure and of  

the crack. 

Walker’s equation describes the crack growth at the second part of the FCG diagram [5]: 
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where: C, m, n are the parameters of the material, determined from the experiment. 

NASGRO model can describe all parts of FCG diagram [20]. This model is given by the 

following equation: 
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where:  C1, n1, p, q are the experimentally determined constants; Keff  = Kmax – Kop is the 

effective range of SIF; Kop is crack opening SIF; Kth is the threshold SIF; KJc is the critical SIF 

determined with the help of critical JIc-integral. 
 
 

1.1 Neural network approach 

Neural networks provide an effective recognition of images, prediction, optimisation and control 

of processes, fit of linear and nonlinear functions. 

In practice, NN are constructed like biological neural networks of a living organism. The basis 

of such networks is a neuron, which is a model of nerve cells of a brain, namely a biological 

neuron. First, NN are able to process information using a large number of neurons 

simultaneously. This enables to process information much faster. Second, NN can learn and 

generalise [21]. 

Each neuron’s input, which receives a certain number of signals, is the output of another neuron. 

Every input signal is multiplied by the appropriate weight, similar to synaptic strength, after that 

all results are added, and then the level of neuron activation is determined (Fig. 1) [22]. 

Generally, a NN is a system of connected simple processors (neurons), which interact with each 

other. The vector x = (x1, x2, ..., xn) arrives at an artificial neuron. Each signal is multiplied by the 

appropriate weights w1, w2, ..., wn, and fed to the adder labelled Σ. Every weight corresponds to 
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the power of one biological synaptic connection. The adder, which belongs to the body of the 

biological element, adds weighted inputs, creating an output, called NET. Each neuron of the 

network deals only with the signals, which it receives periodically and with the signals, which it 

sends periodically to other neurons. After that activation function F transforms the signal NET 

and allows the neurons to receive the output neural signal OUT. 
 

 
Fig. 1 Model of an artificial neuron [22] 

 
 

Therefore, neurons, being connected in a large network, can answer a lot of interesting 

questions. 

NN learn by calculating the weights between neurons. The most common method of NN 

learning is learning with feedback. This means that NN processes the data set and compares the 

actual result of its work with the expected result. Based on the difference between them, NN 

starts setting the weighted connections with the final layer of neurons, which continues until the 

difference between the results will be less than the preset number. Among different 

classifications, multilayer perceptron of direct distribution is the most popular architecture of 

NN, which learns based on back-propagation algorithm. Also, NN are able to generalize. 

Therefore, in the case of successful learning, the network will return the correct result based on 

the data that were not present in the training sample and also on the incomplete data [23]. While 

NN learns, the output output is generally not equal to the target target [23]. 
 
 

2 Experimental material(s) and methods 

The fatigue crack growth rate was studied at STM-100 servo-hydraulic machine on the 

rectangular specimens. Each specimen has the following geometry: the width W was 100 mm, 

length L was 300 mm, and thickness B was 4 mm. Specimen contains a central through hole 

with a diameter D of 5 mm. The specimens were tested under regular loading. The wave form 

was sinusoidal. The test frequency f was 10 Hz. Stress ratios R were equal to 0; 0.3; 0.5; 0.7. The 

specimens were made of D16chT alloy plates (0.2 = 300 MPa, U = 430 MPa) according to 

GOST-25.506-85. The chemical composition of D16chT alloy is presented in Table 1. 
 

Table 1 Chemical composition of aluminum D16chT alloy  

Al Cu Mg Mn Fe Si Zn Ni Ti 

90.8 – 

94.7 

3.8 – 

4.9 

1.2 – 

1.8 

0.3 – 

0.9 
0.5 0.5 0.3 0.1 0.1 

 
 

One possible way of predicting the structural elements failure is to determine their lifetime using 

criteria of fracture mechanics.  

In the present paper, the experimental FCG data in aluminum D16chT alloy were employed. 

These experimental data of FCG under regular loading and stress ratio R = 0; 0.3; 0.5; 0.7 were 

fitted by Walker equation and by the equation NASGRO (4.) (Fig. 2).  
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Fig. 2 The experimental data of FCG rate under regular loading and various load stress 

ratio in aluminum D16chT alloy and their fit by a) Walker equation, b) NASGRO 

equation 
 
 

The parameters of the NASGRO equation are presented in Table 2. 
 

Table 2 Equation NASGRO coefficients 

C1 n1 q p 

7.18E–12 3.76 0.25 0.25 

 
 

In the present study, the two models of NN were built. The experimental data of FCG diagram 

of aluminium D16chT alloy at stress ratio R = 0, namely, da/dN vsK, were the NN input and 

output. A number of nonlinear activation functions model the neural activity. In this case, there 

was chosen the logistic function. 

The input and output parameters were normalized. This can significantly increase the rate of NN 

learning algorithm convergence. Without the normalization, the error will increase. 

The dataset contains 78 experimental values of K and da/dN and 25 experimental values of N 

and a, respectively, of D16chT alloy at R = 0. These data were preliminary transformed using 

log10 function. The main parameters of NN are the topology of NN, learning algorithm and 

activation function of neurons. The sum of squares error function (SOS) was chosen [24]. The 

training method was Broyden–Fletcher–Goldfarb–Shanno (BFGS) [25]. The volume of training 

sample was equal to 70%, while the volume of test sample was equal to 30%. The stop 

parameter of learning network was number of epochs, which in this study was equal to 1000. 
 
 

3 Results and discussion 

The dependency of predicted FCG rate upon the stress intensity factor K at R = 0 is shown in 

the Fig. 3. The prediction was performed using NN approach.  

In the first case, a multilayer perceptron (MLP), consisting of one input, six hidden and one 

output layer (MLP 1-6-1), was obtained. Summary of neural network is presented in Table 3. As 

a result of the study, an average relative error of NN was obtained, which is 1.6%.  

Fig. 4 shows the dependence of crack length a on the number of loading cycles N. In this case, 

MLP, consisting of one input, eight hidden and one output layer (MLP 1-8-1), was obtained. The 
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prediction according to NN method is very close to the experimental data. As a result of the 

study, an average relative error of NN was obtained, which is 0.8%. 

Summary of neural network is presented in Table 4. 
 

Table 3 Summary of neural network 

Network topology 
Training 

performance 
Test performance Training error 

MLP 1-6-1 0.995 0.997 0.008 

Test error Error function Hidden activation Output activation 

0.007 SOS Logistic Logistic 

 
 

  

Fig. 3 The predicted FCG rate 

dependency on stress intensity 

factor K at R = 0 

Fig. 4 Comparison of experimental 

crack length a on the number of 

loading cycles N and  predicted 

by NN in D16chT alloy at R = 0, 

a0 = 15 mm 
 
 

Table 4 Summary of active network  

Network topology 
Training 

performance 
Test performance Training error 

MLP 1-8-1 0.992 0.997 0.0001 

Test error Error function Hidden activation Output activation 

0.00002 SOS Logistic Logistic 

 
 

4 Conclusion 

The FCG rate vs. K and the crack length a vs. loading cycles number N in the aluminium 

D16chТ alloy under the R = 0 were predicted by NN. The modelling results are in a perfect 

agreement with the experimental data. The test error was 0.007 and 0.00002, respectively.  
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