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ABSTRACT 
 
Important structural elements are often under the action of constant amplitude loading. Increasing their lifetime is an actual task and of great economic importance. To 

evaluate the lifetime of structural elements, it is necessary to be able to predict the fatigue crack growth rate (FCG). This task can be effectively solved by methods of 

machine learning, in particular by neural networks, boosted trees, support-vector machines, and k -nearest neighbors. The aim of the present work was to build the 
fatigue crack growth diagrams of steel 0.45% C subjected to constant amplitude loading at stress ratios R = 0, and R = –1 by the methods of machine learning. The 

obtained results are in good agreement with the experimental data. 
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INTRODUCTION 

 

Methods of strength and durability evaluation of the responsible structural 

elements often need the complicated calculations. Therefore, it is important to 
learn how to solve the problems of fracture mechanics by methods of machine 

learning, in particular, neural networks (NN), support-vector machines (SVM), k 

- nearest neighbors and boosted trees, which allow to achieve high accuracy of 

solutions [1  4] . 

The structural elements are often fractured by fatigue, gradually accumulating 

damage. It is possible to observe a small crack which grows under loading. The 
fatigue crack is formed mainly at the stress concentrator, that is, the place of 

damage, which weakens the cross-section of the material. The crack grows as 

long as the material is able to withstand the loading. Therefore, the basic factors 
that influence the strength of structural elements are the surface defects of the 

parts, temperature and the environment during operation, the nature of loading 

and loading conditions [5]. 
It is known that, the basic parameters characterizing the fatigue crack growth 

(FCG) rate da / dN are the stress intensity factor K (SIF) and the stress ratio R 

[6  9]. The fatigue crack growth diagram is usually built in double logarithmic 

coordinates lg da/dN – lg ΔK. It has the form of an S-shaped curve limited on the 

left by the threshold SIF range ΔKth, and on the right by the critical SIF ΔKfc 

(cyclic fracture toughness). The threshold SIF ΔKth is determined experimentally. 
It is an important characteristic of material resistance to fatigue fracture. The 

diagram consists of three regions: region I corresponds approximately to the rate 

da / dN ≈10-10...10-8m/cycle, in which the rate of the FCG increases significantly 
with a slight change of ΔK. Region II has the form of a straight line. The rate in 

this region is in the range of 10-8...10-6 m/cycle. In particular, it is considered that 

here the crack grows evenly for each loading cycle. Region III is characterized by 
accelerated FCG and corresponds the values of da/dN >10-6 m/cycle [5]. At high 

SIF values, the rate of crack growth is extremely high.  

P. Paris and F. Erdogan found out that the FCG rate for metallic materials can be 
determined by the SIF [10]. In particular, the formula obtained by them describes 

only the second region of the fatigue fracture diagram and does not take into 

account the influence of the stress ratio R on the FCG rate [11].  
It is known that, with increasing R the FCG rate increases [12-13]. Therefore, the 

Walker's equation [2, 14] is used to describe the FCG rate taking into account the 

stress ratio R. However, these models don’t take into account the variable regions 
of FCG. The Forman's equation [15-16] is used to describe the FCG curve with 

high K values. NASGRO model can describe all parts of the FCG diagram [17]. 

 

 

MATERIAL AND METHODS 

 

Machine learning: Background and Modeling 

Progress of modern technology, in particular, high demands for accuracy and 

efficiency, have led to the creation of methods that solve a number of important 

tasks. Therefore, neural networks, support-vector machines, k - nearest neighbors, 
boosted trees are powerful algorithms of supervised learning, which can be used 

to predict FCG.  

NN consist of a very large, though the finite, number of items that form the input 
layer, one or more hidden layers of computational neurons, and one output layer. 

The input signal is transmitted over the network in the direction from layer to 

layer [18]. Such networks are usually called multilayer perceptrons, which quite 
accurately solve different tasks. NN determines the relationship coefficients 

between neurons, whereas the computational power of a multilayer perceptron is 

in its ability to learn on its own experience and the backpropagation algorithm. 
The idea of this algorithm is based on an error correction. The basic parameters 

of NN are its topology, algorithm of training and the functions of the neurons 

activation. In the current study, the sum of squares error function (SOS) was 

chosen and the training method was Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) [19-22]. The stop parameter of learning network was number of epochs, 

which in this study was equal to 1000. 
The boosted trees algorithm reflects the natural thinking of human processes 

while making a decision [23]. The data obtained by building and using boosted 

trees are logical and easy for visualizing and interpreting. The algorithm of 
building the boosted trees structure consists of the creating and cancellation 

stages of trees. In creating trees, one chooses the criteria of splitting and 

termination of learning, whereas in the course of trees cancellation, some 
branches are removed. The boosted trees method is used when the results of one 

decision influence the next, in particular, for making consistent decisions. 

The ideas of the methods of support-vector machines and k-nearest neighbors are 
the simplest [24]. In the first method, the data are presented as points in the 

space. The training data are split into two categories. The training algorithm 

creates a model attributing new data to a certain category. Geometrically, it looks 
as if we are trying to draw a straight line centrally between two sets. The nearest 

to this straight line points are the support vectors. The support-vector machines 

method, as any method of machine learning, has many parameters. In this case, 
the basis objects are the regularization parameter, the loss function, which treats 

as errors only predicted values deviating from the actual values by a distance 

greater than ε, and the kernel parameter γ. As the kernel function, the radial basis 
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function (RBF) is used. The method of k-nearest neighbor assigns a new object to 

the class that is the most common over k-nearest neighbors of the training 
sample. The distance between k-nearest neighbors is usually chosen as Euclidean.  

The aim of the learning process is to minimize the loss function, which should 

decrease. In the current study, the loss function was chosen as the mean squared 
error (MSE) [4]: 
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where:   yprediction [m/cycle] - the predicted element of sample  
            ytrue [m/cycle] - the true value of the sample  element

  

            

n - the volume of the training sample 

 
Therefore, to train the networks one needs a dataset that contains as many 

observations as possible. In particular, it is advisable to experiment with different 

networks topologies to avoid getting the erroneous result in the case, if the 
learning process has found the local minimum of the target loss function. 

Therefore, if in the next experiment one observes underfitting, that is, the 

network issues a dissatisfactory result, we should try adding a new hidden layer. 
On the other hand, if the error started to grow, that is, overfitting occurs, one 

should try to remove one or more hidden layers.  

The prediction error was Mean Absolute Percent Error (MAPE): 
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Experimental material(s) and methods 

 

During the operation, a railway axle undergoes static and cyclic loading, 
including random loading, bending, as well as corrosive action of environment 

and climate temperatures.  

The FCG rate in axle steel was predicted by methods of machine learning 
according to the experimental data of FCG obtained for 0.45% C steel and stress 

ratios R = 0, –1 [25]. The sample consisted of 200 elements, 70% of which were 

chosen randomly for the training sample and 30% were left for estimating the 

quality of predictions. The input parameters were the SIF range K and the stress 

ratio R. The FCG rate da/dN under regular loading for the stress ratios R = 0, –1 

was chosen as the output parameter. The input and output parameters were 
normalized using the decimal log function to decrease the prediction error.  

 

RESULTS AND DISCUSSION 

 

The dependences of the experimental FCG rates da/dNexp on the predicted FCG 

values da/dNpred for R = 0, –1 are shown in Fig. 1. 
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Fig. 1 The experimental (da/dNtrue) and predicted (da/dNpred) FCG rates for R = 0, 
–1 by methods of neural networks (a), support-vector machines (b), k-nearest 

neighbors (c), boosted trees (d) 

 
There were built the experimental and predicted dependences of the FCG rate da 

/dN on the SIF range K for R = 0, 1 using the methods of machine learning 

(Fig. 2). 
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Fig. 2 The experimental da/dNtrue and predicted da/dNpred dependences of FCG 

rate on the KIN K for R = 0, 1 by the methods of neural networks (a), support-

vector machines (b), k - nearest neighbors (c), boosted trees (d) 
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The parameters of the constructed neural networks, support-vector machines, k - 

nearest neighbors and boosted trees are summarized in Tables 1−3.  
 

Table 1 Parameters of Neural Network and Boosted trees 

Stress 

ratio 

Name of 

network 

Function of 

hidden 

activation 

Function of 

output 

activation 

Number of 

repetitions 

(for boosted 

trees) 

R = 0, –1 MLP 2-6-1 Logarithmic Exponential 200 

 

Table 2 Parameters of Support-Vector Machines 

Stress 

ratio 

Regularization 

parameter 

Insensitive 

loss function  

Kernel 

Parameter 

 

Number of 

support 

vectors 

R = 0; 1 10 0,1 0,5 
30 (bounded 

by 19) 

 

Table 3 Parameters of k -Nearest Neighbors 

Stress ratio Number of nearest neighbors Distance 

R = 0; 1 1 Euclidean 

 

The error of the NN method for the test sample is 4.5%, the support-vector 

machines is 5.5%, the k - nearest neighbors is 5.5% and the boosted trees is 6.7%. 

 

CONCLUSION 

 
The predicted FCG rate data are in good agreement with the experimental ones.  

In the present study, the NN prediction accuracy is 95.5%, which is the best 

among the applied methods. Support-vector machines, k - nearest neighbors, and 
boosted trees also show good results in terms of accuracy. The methods of 

machine learning are powerful and efficient tools which allow evaluating the 

FCG behavior. 
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