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Abstract

A lump integral model is developed for freezing ameélting of the bath material onto the
surface of a plate shaped additive immersed ingéatad melt bath. It exhibits the dependence
of this occurrence on independent parameters-itial itemperaturef),; of the additive, the bath
temperaturey, , the Biot number, Bhe property ratio, B and the Stefan humbemriél yields
closed-form solutions for time variant frozen laybickness,£ around the additive and heat
penetration depthy in the additive. In the solutions, B,,B, and 0, appear as a conduction
factor, Gy that ranges from 0 t®. The frozen layer thickness per unijtv8th respect to ¢
takes timer ma=1/3 for its maximum growth whereas this maximunckhessé* .., becomes
(1- 0,4)/3. The total time of the growth of the maximunoZen layer thickness with its
subsequent meltingy; is 4/3 when the heat penetration depth reachesdhtral axis of the
plate additiven=1. When G; —0 signifying highly agitated bath {hw) or additive preheated
to the freezing temperature of the bath materialfreezing of the bath material occurs. For the
bath at the freezing temperature of the bath natahe frozen thickness is also obtained. The
model is validated by reducing the present prolieimeating of the plate additive subjected to a
constant temperature maintained at the freezingeeature of the bath material.

Keywords: Mathematical modeling; melt-additive system; fiag, melting.

1 Introduction

Melting of a solid additive in a melt bath is emy#d in manufacture of steel, alloy, cast iron
and similar other materials. It undergoes differgeps. The first step is freezing and melting of
the bath material around the surface of the addiilong with rise in the temperature of the
additive. In the second step, the additive is lteaddts melting temperature after its emergence
at an elevated temperature whereas it melts intlivd step. These steps depend on the
temperatures of the bath and the additive, battatagn and thermo-physical properties of the
additive- bath system and take certain time foirteempletion. Such a time regulates the
productivity of manufacture of these materials. c8irtheir increased productivity without
compromise of quality for global competitivenessofsgreat importance, the reduction in the
time of the production is essential. It can be eehil, once the time taken in the first step, which
is not needed in the melting process of the adalitiut occurs due to requirement of heat to be
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conducted in the additive more than the convediaat available from the bath during its initial
period resulting in supply of latent heat of fusiby freezing of the bath material onto the
additive and at its later period less than thislakile convective heat causing the excess of the
convective heat to melt the frozen layer, is mizmai. This is possible with the growth of a
smaller thickness of the frozen layer. It is at@irwhen the convective heat from the bath is
increased by increasing the bath agitation. Itregsly reduces the frozen layer thickness, the
time of completion of the first step and does rlmvathe heat to penetrate the entire volume of
the additive. Consequently, the total time of nmgjtis decreased and the productivity of
manufacturing is increased.

Investigation of such a situation that leads taris resistance of the frozen layer negligible
with respect to that of the bath seldom appeatkéHiterature. However, the occurrence of the
first step for plate [1], cylindrical [2-4] and sptical [5, 6] shaped solid additives is analyzed
when the frozen layer formed on these additivestheis thermal resistances comparable with
those of their bath. In this situation, it is ot that the increased heat transfer coefficient of
the bath reduces the frozen layer thickness and taken in the first step for the plate [1],
spherical [6] and cylindrical [3] additives. Thisegliction is implicit in [2, 5] whereas in [4] only
instant equilibrium temperature at the interfacereen the additive and the bath immediately
after the immersion of the additive in the batffioisnd. Closed-form solutions for the growth of
the maximum frozen layer thickness, its time of@epment and the total time of freezing and
melting of the bath material onto the cylindricdddive in an agitated bath [7] is also reported
recently.

In view of these facts, this work aims at developtrf a lump-integral model in dimensionless
form for freezing and subsequent melting of thehbaiaterial onto the surface of the plate
additive immersed in the agitated bath. The frolayer formed is assumed to have much
smaller thermal resistance than that of the adzlifthe model exhibits the dependence of this
phenomenon on the independent parameters- irgiapérature of the additive,, the Stefan
number, Sindicative of phase change of the bath matetia,Riot number, Brepresenting the
bath agitation, the property ratio, B and the bstmperature,. It provides closed-form
solutions for frozen layer with subsequent meltiitg, completion time and heat penetration
depth within the additive. They are functions aégb independent parameters with B.6Band

04 0ccurring as a conduction factor,.G-urther transformation makes these solutions ratdgret
only on time. For this situation, time for maximuwrowth of frozen layer and total time for
freezing of this layer with its subsequent meltiage derived. To validate the model it is
converted to a solution of the past investigat®dlose agreement is exhibited.

2 Mathematical Model

To estimate the time for the first step as desdrilpethe introduction, a suitable mathematical
model is designed. Here, the additive is in thenfaf a plate of thickness 2b and at a uniform
temperature J lower than its melting temperature, before its immersion in the agitated melt
bath contained in a ladle in which the bath is lighly agitated state owing to falling stream of
the melt during tapping or stirring in the ladlehi§ bath is assumed to remain at a constant
temperature, g during the first step. Moreover, the plate addithas the melting temperature,
Tqs higher than the freezing temperaturg @f the bath material. For such a solid additivdtme
bath system exhibited iRig.1, T4<Tw<Ta<T, and upon immersion of the plate additive, the
melt of the bath immediately freezes onto the swrfaf the plate, the contact interface between
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the frozen layer and the plate arrives at an dajuilin temperature, JJless than the additive
melting temperature, .fand the temperature gradient sets up onto the plad the frozen layer
sides. Due to passing of the immersion timgbdilds up, the frozen layer grows in thickness,
the heat penetrates the additive. This happens wieerate of heat conduction to the plate due
to the temperature gradient developed on its s@mams more than the convective heat
available from the bath. The deficient amount &f tonvective heat is met by the latent heat of
fusion evolved due to freezing of the bath mateviatb the surface of the plate. Once the two
rates of heat transfer become the same, the frtmem growth ceases. After this time the
convective heat available from the bath to thedrlayer is greater than the conductive heat
transfer from the frozen layer to the plate. Tleisders the frozen layer to melt with further rise
of the interface temperature and heating of théeplditimately, the complete melting of the
frozen layer occurs leaving the plate at an elevadenperature which is less thag. THeat
transfer in this situation is regulated by one-disienal conjugated transient heat conduction.
Its non-dimensional integral form describing thenperature field within the heat penetration
depth of the plate along with initial and boundeoynditions can be written as

d (o do dp _ 1 06 06
— [ 6,d&, - O,)so— + ey = = |am0 “o|ea= ] 1)
drj’/a a MalaT0 g, Tales g T o afa|"a° a{a|<‘a 7
6,=6,, n<é&<0n=0r7=0 (2.)
0,=0,<1<8y, &, =01>0 3.
0&/0&, =0, 6,=6,, & =-n1>0 4)
Heat Penetration depth in
additive at any time
7 ‘ Frozen layer at any time
_da_| dm | i Semithickness of additive
b1 ﬁ Moving frozen layer
L Th
‘ Te= - . :
Tai Tmf s 3 Bath
" Xa d Xm

Fig. 1 Schematic of freezing and melting of bath materidgb plate additive in an agitated
bath

As the agitated bath has a high value of heat feameefficient, it provides a large amount of
convective heat, hfT ;) owing to which a small amount of latent heatusdién to balance the
difference of the conducted heat to the plate &edcbnvective heat available from the bath is
required. It is affected by the development of fitezen layer of quite a small thickness [1, 8].
This condition makes the thermal resistance othiefrozen layer insignificant with respect to
the convective thermal resistance of the melt [@jthAt any instant of time, such a feature sets
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in a uniform temperature in the entire frozen laykickness, g which is the freezing
temperature, J; of the bath because the freezing front in contéitt the bath always remains at
T Moreover, the contact interface temperaturgh@tween the plate and the frozen layer due
to above fact is also at,f These permit the frozen layer to act as a lungpesy [9-11] which
due to remaining at .} does not absorb or release sensible heat. Themwation of energy to
this lump leads to a balance between the sum dathat heat of fusion evolved by freezing and
convective heat supplied by the bath and the heatucted to the additive. It takes the form

(dé/d)/S + By(6y =1) = ~Qun, & =&7>0 with BB, =B (5)
It is subjected to an initial condition
é=0r=0 (6.)

The conjugated conditions at the interface betwhkeradditive plate and the frozen layer can be
written as

(08/0¢,)/B=-Q,, &= =07>0 (7)
0,=0n=0,=1, &=, =07>0 (8)

Note that equations (1) to (8) form the mathemaétivadel of the present problem. This type of
model is identified as lump-integral since the &oZayer is assumed to be a lump and the
additive is considered an integral system in thedtiion of heating. Governing equations (1) and
(5) assume the uniform but different thermo-phylgizaperties for the frozen layer and the plate
additive whereas equations (7) and (8) are writtdven the surface of the plate is in perfect
contact with the surface of the frozen layer with interface resistance between them. These
assumptions in the recent past investigation agtatiwith freezing of the bath material onto
the spherical [5, 6] and plate shaped additivelP],having comparative thermal resistances of
the bath with respect to the frozen layer providedeptable solutions. These equations indicate
the model dependence upon the independent paramititial temperature,; of the additive,
the bulk temperaturd), of the bath, the modified Biot number,,,and the Stefan number, 8

is noted that the Bepresents the condition of the bath whergas tBe indicative of the phase-
change parameter of the bath material.

3 Solution

The present model exhibits that it is a moving phatsange problem owing to the presence of
equation (5) and is coupled as a result of conjungatonditions, equations (7) and (8). These do
not permit the model to give an analytical solutising exact analyses reported in the literature.
In such a situation approximate analytical methioelsome of great significance and practical.
One of these methods refer to integral method whiekled simple solutions in closed-form for
melting or freezing and cooling or heating probleimsprevious investigations [13, 14] is
applied. Also, in recently investigated other hegtand phase-change problems [15-17], this
method reduces them to initial value problems,rthmerical solutions of which can be readily
obtained using standard Runge-Kutta method. In @éuwhis, the governing equation (1) for
heating of plate additive has been already expdessdahe integral format. For solution, it
requires a prior knowledge of temperature fielchimtthe heated region of the additive which is
assumed to be parabolic.
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6, =6, +(1-6,)1+&/nf 9.)

Note that such a profile is realistic since in thelting [15] and freezing [16] problems it
yielded acceptable and accurate results. It sasigfie boundary conditions, equations (3) and
(4). Employing equation (9), the integral equatjbhtakes the form

LI M_[M(%)]

dr “dr B| Bp ¢,
It reduces to

df-6,)7/3)/dr = A1-8,)/(Bn) (10.)

once equation (4) is applied. Similarly, use ofaan (9) in the conjugating condition, equation
(7) gives.

21-6,)/(Bn) =—Qum, (11)
Substituting this equation in the energy balanaegqgn (5) leads to
(d6/d7)/ S + By(6, -1 = 2{1-6,)/(Br) (12

It is noted that equation (12) for the frozen larecknessg gets coupled with equation (10) due
to presence of in it. These two equations (10) and (12) form dtameous differential equation
of first order in time,r due to presence of a constant temperature differéh-0,) giving a
closed-from solution. Their closed-form solutiorre aften difficult to obtain. However, their
examination indicates that equation (10) can beced to

dn/dr = 6/(Bn) (13))
Satisfying the initial condition, equation (2)gives
n=4y12r/B (14.)

To solve equation (12), it is combined with equatfd0) leading to

dl2-6,)1/3-¢/s]/dr =B(6, -1 (15)
It readily gives a closed-form solution
(-6 )1/3-¢/s =Bn(6, -D1 (16.)

It fulfills the initial conditions, equations (2nd (6). This solution is not an explicit functioh o
7, rather functions of andn. To overcome this equation (14) is applied to madfeation (16) a
function of time.

& =&/S= -By(6,-Dr+ (-6, N12r/B/3 (17.)
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Equations (17) and (14) give, respectively, clok®di relations for the growth of the frozen
layer, £ and the heat penetration depthn the additive in terms of measured just after the
immersion of the additive in the bath.

3.1 Maximum frozen layer thickness and its growth time
To find the development of the maximum frozen laygckness, & /dt found from the equation
(17) is made zero.

d& /dr= -B,,(6, -1 + (1-6, W12/BTr7V2/6=0 (18.)
It gives
r/B=[(-6,){Bi (6, -1} /3=C5 /3 (19))
where,

Bi =Bin B = hby/K, andCy =(1-6, ){B (6, ~1} = {Ka(Tww ~Ta )/0}AN(T, ~ T (20.)

Here, the Biot number,;Bepresents the ratio of the conductive resistafitiee additive and the
convective resistance of the bath wheregsdesignated as conduction factor, is the ratithef
heat conducted to the additive,(Kn+-T4)/b owing to the difference of the freezing tempera

of the bath material and the initial temperaturehef additive and the convective heat available
from the bath, h(f— Tyy). Its values range from 0 to (0< Cy < ). Zero indicates preheated
additive at the freezing temperature of the battene permitting no conductive heat transfer to
the additive whereaso signifies the bath at the freezing temperaturethef bath material
resulting non-availability of the convective heedrh the bath. Using equation (19), equation
(17) provides maximum frozen layer thickness

&.=-6.7/38(6,-1]=[0-6,)c, /3 (21)

since d?¢"/dr? <0, the condition for the maximum value f , is satisfied at such a time,
which is hereafter called,ay.

3.2 Total time of freezing and subsequent melting of the bath material, r,
As in this time s the frozen layers developed melts completely giviig=0. Its substitution in
equation (17) provides an expressiontdor

Jr. =Ni2B (-6, )|/38,(6, -1

Itis rearranged to provide

r./B=(4/3)(1-6,)/BB, (6, -1}’ =(4/3)L- 0, )/{B (6, -1}]" =(a/3)c; (22,
Using equations (22) and (19), the time of melting, of the frozen layer can written as

Tm = Tt - Tmax = C02f (23')
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Note that equation (19) indicates that the timetli@ growth of the maximum thickness of the
frozen Iayerf:nax is always 25% of the total time taken in freezamgl its subsequent melting
whereas equation (23) states that the meltingefrbzen layer takes 75% of the total time.

3.3 Condition for the additive to act as semi-infinite

In several practical situations during the perigaf freezing and melting of the bath material,
the additive plate does not get completely heatidgto which the heat does not penetrate the
central axis of the plate. In this condition thatplacts as semi-infinite and the heat penetration
depthm within it always remaing < 1. Applying it to equation (14) leads to

/B <1/12 (24.)
Substitution of the equation (24) in equation (@&)vides
Cot<1/4 (25.)

It is the requisite condition for the additive ®main semi-infinite during freezing and melting
of the bath material.

3.4 Reduction of solutionsonly as a function of time

Since equations (19) to (23) are functions of catidn factor, G, they including equations
(14) and (17) are transformed with respect to factor reducing them to only a function of
time. Using this concept, the growth of frozen layeickness, equation (17) and the heat
penetration depth equation (14) become respectively

& =¢&,/0-6,)=\12r, [3-1,, (26.)
/7cm = VlZTCm ’ (27)

Whel’e,f;m = {*/Cof Tem = T/(Bcgf v Tlem =/7/Cof
whereas time of maximum frozen layer thicknessaéiqn (19) and total time of freezing and
melting equation (22) can be expressed respectagly

Tem =7/(BCH) =1/3 (28.)
Ty =7,/(BCG) = 4/3 (29.)
The growth for the maximum frozen layer thicknestgjation (21) is changed to

gztnax = fémax/(l_ 6,) =1/3, Wherefémax = Er:"lax/cof (30.)

Although the freezing and melting of the bath matesynto the surface of plate additive follows
a complicated heat transfer process, this modeblesato make the frozen layer growth,
equation (26) and the heat penetration depdguation (27) only a function of time.
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4 Model Validation

To validate the present model, this problem issfammed to heating of the additive by the bath
when no freezing of the bath material occurs oheodurface of the plate additive. This can be
achieved once the bath is assumed to be highlataditwith heat transfer co-efficientho,
Biot number, B—ow or the latent heat of fusion of the bath matdsalery high L,—w, § —0
leading to growth of the frozen layer of insignifit thicknessg —0. The contact interface
temperature between the insignificant frozen layed the plate additive remains at the freezing
temperature, J; of the bath material. These reduce the presetigmoof heating of the plate at
a constant temperature,J These concepts vanish equation (17) withoutialjezquation (14)
providing

n=Dr¥?, where, D=+12 =3.46 (31))

The exact solution [18] gives D= 3.66 whereas theational method [19] provided D=3.36. A
close agreement is observed validating the presedel.

5 Resultsand Discussions

The mathematical model of lump-integral form jusiveloped for freezing and melting of the
bath material around the surface of the plate shapditive immersed in an agitated bath shows
that this occurrence is regulated by the initialperature,6, of the additive, the bath
temperaturefy, the bath agitation represented by the Biot numBgiphase-change parameter
of the bath material denoted by the Stefan nunfjeand the property-ratio, B of the additive-
bath system. However, in the closed-form solutibgs, 8, B, and B appear as a conduction
factor, Gy, equation (20). For different plate shaped adeibath systems employed in
steelmaking and cast iron preparation, values ekdhparameters appear in Tablel. The
conduction factor, & ranges from 0 tec. Gy =0 signifying no conductive heat transfer to the
additive which, in turn, does not permit freezirfgh®e bath material onto the additive leading to
elimination of the first step of the freezing anctltimg. In practice it can be achieved by
preheating the additive to the freezing temperanfréhe bath material6g =1) before its
immersion in the bath or increasing the bath dgitafor a prescribed temperatuy; of the
additive. G; = indicates that the convective heat is not avaldbbm the bath. It happens
when the bath temperature is maintained at theifiggemperature of the bath materig<£1).
Under this situation, the conductive heat requbbgdhe additive after its immersion in the bath
is met by only evolution of latent heat of fusiomedto freezing of the bath material.
Consequently, the frozen layer continues to groa mnelting of this layer never takes place.
Due to these facts a smaller value gf €lose to zero is preferred for growth of a smalkzén
layer thickness so that much less time is requfogdfreezing with its melting. The Stefan
number, $is the ratio of sensible heat and latent heat efofu of the bath material. Its high
value represents bath material of small latent b&#&tsion leading to growth of large thickness
of the frozen layer. In the closed-form solution flee frozen layer thickness it is taken per unit
S, equation (17) termed &S for making it applicable to any bath material. ther, & with
respect to the conduction factoryCealled f;m becomes only a function of the initial
temperaturef,; of the additive, equation (26). The heat penetnatepthn., equation (27) is
implicitly dependent on these factors. In thesamfats, the growth of{émto its maximum
thickness takes timeg,=1/3 whereas total timg,for freezing to this maximum thickness and its
melting is 4/3. The maximum thickness of the frot@yer assumes. ., = (1—93j)/3. These
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forms have advantage of applying to any plate sthaulglitive and the bath materials. For the
additive-bath systems of Tablel with the plate teliof given semi-thickness and initial
temperature, total time of freezing and meltinghglovith the maximum thickness of the frozen
layer developed can be readily obtained employqgagons (22) and (21), respectively.

Table 1 Thermo-physical properties of the Bath material5,[0].
Bath material Km Pm Com L, x10° T s Ty
wm?K? Kgm® | JKg'K™ JKg*! °C °C
Cast-lron ~4%C 51.9 7304 417 275.7 1160 | 1550
Hot-Metal 35 6850 670 275.7 1150 1500
Slag 1.06 2890 920 544 1500] 1600

Table 2 Thermo-physical properties of the Solid additive5[20].

K. Pa Cpa Ta b x10°

Solid additive wmiK™? Kgm? JKg'K™! °c m
Ni 90 8906 449.5 20 5

40 125
Ferro-M agnese 7.5 7200 700 20 5

40 125
DRI 2.13 2600 820 20 5

40 125

Table 3 Non-dimensional parameters of Bath-solid additiystesm [1,5,20].

Bath-solid additive system 0, x10° | 0, B *B, Cof S

Cast iron ~4%C and Ni 17.2 133 | 044 | 033 |8.77 |1.75
34.5 8.33 0.34

Hot metal and Ferro-M agnese 17.4 1.3 4.25 4 0.81 | 2.79
34.8 100 0.03

Slag and DRI 13.3 1.06 | 0.62 | 14.08 |1.05 |254
26.6 352.1 | 0.04

*Based on heat transfer co-efficient, h= 6000 Wh

5.1 Effect of conduction factor, Cy

Displayed in Fig.2 are time variant growth of frazayer thickness per unit,§ and the heat
penetration depthy in the additive for a prescribed initial temperet,; of the additive. The
conduction factor, g is taken as a parameter. It indicates that for €aghthe freezing and
melting assumes a parabolic behavior with the heifjthe apex of the parabola signifying the
maximum thickness of the frozen layer. Decreasipgi€creases the height of the apex of the
parabola and in turn, the maximum thickness of ftbegen layer. Moreover, the apex shifts
towards zero time and both the total time of fragzand melting, equation (22) and the time
taken to attain the maximum thickness, equatior) fExrease with square of;C The heat
penetration depth at the time of completion of fileezing and melting also diminishes. These
findings appear to be realistic since for a présdiinitial temperaturef, of the additive
allowing a certain amount of heat to be conductethé additive, the reduction indncreases
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the availability of convective heat from the bath & given bath temperature. This increases the
Biot number and makes the bath more agitated. Alsahe heat conducted to the additive is

sum of the convective heat available from the lzatth the latent heat of fusion liberated owing

to the freezing of the bath material onto the adelitluring the development of the frozen layer,

increased convective heat from the bath by theaedl @, requires less amount of heat liberated

as the latent heat of fusion to meet the abovereisionductive heat. It leads to a growth of

smaller thickness of the frozen layEig.2.

08 0.8
" A & —
070 P _ - 07
& / o | ]
06 - 0.6
‘E[ / err':ﬂ_l E.\
05 - 05
E / g
5
& 0 4 04 E_
E 03 403 E
02 LCot -5 102
o1 4 01
\'.
Lo "r« I l | I | |

0.0 o1 02 03 04 05 06 07 .08 .09
Time ;/f
Fig. 2 Effect of Cof, on time dependent frozen layer thiegs, heat penetration depth and
total time of freezing and melting for additiveci

5.2 Influence of initial temperature of the additive, 05

lllustrated in Fig.3 are the frozen layer thickness, and the heat penetration depth,as
functions of time for different values of initiaémnperaturef,; of the additive. They are for a
particular conduction factor, ;£ Although the freezing and melting follows the adaolic
behavior for eachd, with increasing initial temperaturel,, the maximum frozen layer
thickness, equation (21) decreases, but the tikentto attain this thickness, equation (19), total
time of freezing and melting, equation (22) and tieat penetration depth remain unaltered.
When the initial temperaturd), of the additive is at the freezing temperaturetiad bath
material, no freezing occurs. The following faatpgort these predictions. For a specified value
of conduction factor, & decreasing,; increases the heat conduction to the additiveimodder

to maintain this value of &, the convective heat from the bath is to be msed to the amount
by which the heat conduction is increased. As altethe requirement of latent heat of fusion is
increased leading to formation of larger thicknesthe frozen layer. Moreover, as the value of
C.t , a ratio of conductive heat transfer to the adeliand the convective heat supplied by the
bath does not change despite the change in thessafuithese two heat transfer due to change in
0. , the requirement of time for development of thezén layer with its subsequent melting
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remains the same. The growth of the frozen laydrignmelting, however, gets speed up owing
to an increased temperature difference betweenb#ik and the additive once the initial
temperaturef,; of the additive is decreased.

o = 4 n
& 1 _fa————-_h_q_ = * |
. 035 }x‘/ 8,;_0.1 E— 35
g 03 - E §
é[ms = [:ff 0.4 BT
5| .02 1 12 g
B "
015 _Z/— B4i=0.7 e 8 - .15 P
E 01 ﬂ —— 441 g
005 ?/é/ T e, ¥ + .05
0.0 002. 004 006 .008 .01 .012 014 016 .018 .02 .022

e Er
Fig. 3 Influence of initial temperatur®,; of additive on time of growth of frozen layer,
total time of freezing and melting and heat pertietnadepth for a given conduction
factor, Gy of bath-additive system
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Fig. 4 Time for development of frozen layer, heat penitradlepth including total time of
freezing and melting. They are for any plate additiaving any initial temperature

5.3 Growth of frozen layer applicableto any plate additive and bath materials

With respect to the conduction factor,, & per unit difference of temperature between the
freezing temperature of the bath material and thigal temperaturef, of the additive
represented bf;m equation (26) and the heat penetration depthtddnaoyn., equation (27)
become only the function of time. Their plots witime, Fig.4 assume the behavior similar to
those appear in Figs.2 and 3. They act as univgrsgdhs and applied to any plate shaped
additive-bath materials provided the freezing amdsequent melting of the bath material onto
the additive takes place. In this situation, theximam frozen layer thickness.ya,=1/3,
equation (30) with its time of formation.,=1/3, equation (28) whereas the total time of
freezing of this thickness with its subsequent melis t,=4/3. For any of the additive-bath
system contained in Tablel, these graphs or emsat{80), (28), (29) readily give the
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dimensional values of frozen layer thickness, tiimeits maximum growth and total time of
freezing and melting once the data of the Tabledmployed. They are beneficial for industrial
applications.

6 Conclusions

A non-dimensional lump-integral model evolved foe first step of the freezing and melting of
the bath material onto the surface of the platpatiaadditive in an agitated bath gives closed-
form solutions for the growth of the frozen layeittwits subsequent melting and the heat
penetration depth in the plate additive with theneti measured immediately after their
occurrence. They are regulated by conduction facgrand6,. Decreasing & reduces the
growth of maximum thickness of the frozen layes, time of growth and the total time of
freezing with its melting. Increasing the initigniperature of the additive,; the growth of the
maximum frozen layer thickness reduces. Howevetjrite of growth and total time of freezing
with its melting almost remains the same. This siépost disappears and the frozen layer
thickness becomes almost zero once the bath isnaslsto be highly agitated,C—0. With
respect to ¢ , these solutions lead to frozen layer and thé peaetration depth only a function
of time which are applied to any additive-bath eystprovided the additive is plate shaped. In
this situation, the time taken for the maximum khiess of the frozen layeg,, ., iS Tema=1/3
whereas the total time taken for the first step#st/3.
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Appendix:

3

Q
S

CTXIT2O00O00IITEO

semithickness of the plate, m

property ratio, (KCwKiCa)

Biot number, (hb/k)

Modified Biot no., (hR/K)*(K .C4/KnCrm)
heat capacitypCp), Jm°K™

Specific heat, JKK™

conduction factor, (184)/ B; (0 -1)

heat penetration depth or frozen layer thicknessgttime, m
heat transfer coefficient, W™
thermal conductivity, WK™

latent heat of fusion, JKg

Om heat transfer from the frozen layer to the adelit\m?

Qmn non-dimensional heat transfer from the frozen lagehe additive,

(me/Ka Tmf)/B

S Stefan number, (T / L pm)

t time, s

T temperature, K

X distance along the heat penetration depth aefrdayer, m

Greek letters

o thermal diffusivity, ms*

& non-dimensional thickness of the frozen lay&;,d/Cb) or distance along frozen
layer, (GX/Czb) or the additive (x¥b)

n non-dimensional heat penetration depth in thitiwe at any time, (db)

p density, Kgn

0 non-dimensional temperature, (T47

T non-dimensional time, (C/C.20A)t

Subscript

a plate additive

ai initial condition of additive

b bulk condition

e at the interface between the additive and theefrdayer at time.

m frozen bath material
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