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Abstract 
A lump integral model is developed for freezing and melting of the bath material onto the 
surface of a plate shaped additive immersed in an agitated melt bath. It exhibits the dependence 
of this occurrence on independent parameters-the initial temperature, θai  of the additive, the bath 
temperature, θb , the Biot number, Bi the property ratio, B and the Stefan number, St and yields 
closed-form solutions for time variant frozen layer thickness, ξ around the additive and heat 
penetration depth, η in the additive. In the solutions, B, Bi, θb and θai appear as a conduction 
factor, Cof that ranges from 0 to ∞. The frozen layer thickness per unit St with respect to Cof 
takes time τcmax=1/3 for its maximum growth whereas this maximum thickness ξ* cmax becomes 
(1- θai)/3. The total time of the growth of the maximum frozen layer thickness with its 
subsequent melting, τct is 4/3 when the heat penetration depth reaches the central axis of the 
plate additive, η=1. When Cof →0 signifying highly agitated bath (h→∞) or additive preheated 
to the freezing temperature of the bath material, no freezing of the bath material occurs. For the 
bath at the freezing temperature of the bath material, the frozen thickness is also obtained. The 
model is validated by reducing the present problem to heating of the plate additive subjected to a 
constant temperature maintained at the freezing temperature of the bath material.   
 

Keywords: Mathematical modeling; melt-additive system; freezing, melting. 
 
 

1 Introduction 
Melting of a solid additive in a melt bath is employed in manufacture of steel, alloy, cast iron 
and similar other materials. It undergoes different steps. The first step is freezing and melting of 
the bath material around the surface of the additive along with rise in the temperature of the 
additive. In the second step, the additive is heated to its melting temperature after its emergence 
at an elevated temperature whereas it melts in the third step. These steps depend on the 
temperatures of the bath and the additive, bath agitation and thermo-physical properties of the 
additive- bath system and take certain time for their completion. Such a time regulates the 
productivity of manufacture of these materials. Since their increased productivity without 
compromise of quality for global competitiveness is of great importance, the reduction in the 
time of the production is essential. It can be achieved, once the time taken in the first step, which 
is not needed in the melting process of the additive but occurs due to requirement of heat to be 
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conducted in the additive more than the convective heat available from the bath during its initial 
period resulting in supply of latent heat of fusion by freezing of the bath material onto the 
additive and at its later period less than this available convective heat causing the excess of the 
convective heat to melt the frozen layer, is minimized. This is possible with the growth of a 
smaller thickness of the frozen layer. It is attained when the convective heat from the bath is 
increased by increasing the bath agitation. It essentially reduces the frozen layer thickness, the 
time of completion of the first step and does not allow the heat to penetrate the entire volume of 
the additive. Consequently, the total time of melting is decreased and the productivity of 
manufacturing is increased. 
Investigation of such a situation that leads to thermal resistance of the frozen layer negligible 
with respect to that of the bath seldom appears in the literature. However, the occurrence of the 
first step for plate [1], cylindrical [2-4] and spherical [5, 6] shaped solid additives is analyzed 
when the frozen layer formed on these additives has their thermal resistances comparable with 
those of their bath. In this situation, it is observed that the increased heat transfer coefficient of 
the bath reduces the frozen layer thickness and time taken in the first step for the plate [1], 
spherical [6] and cylindrical [3] additives. This prediction is implicit in [2, 5] whereas in [4] only 
instant equilibrium temperature at the interface between the additive and the bath immediately 
after the immersion of the additive in the bath is found. Closed-form solutions for the growth of 
the maximum frozen layer thickness, its time of development and the total time of freezing and 
melting of the bath material onto the cylindrical additive in an agitated bath [7] is also reported 
recently.  
In view of these facts, this work aims at development of a lump-integral model in dimensionless 
form for freezing and subsequent melting of the bath material onto the surface of the plate 
additive immersed in the agitated bath. The frozen layer formed is assumed to have much 
smaller thermal resistance than that of the additive. The model exhibits the dependence of this 
phenomenon on the independent parameters- initial temperature of the additive, θai, the Stefan 
number, St indicative of phase change of the bath material, the Biot number, Bi representing the 
bath agitation, the property ratio, B and the bath temperature, θb. It provides closed-form 
solutions for frozen layer with subsequent melting, its completion time and heat penetration 
depth within the additive. They are functions of these independent parameters with B, Bi, θb and 
θai occurring as a conduction factor, Cof. Further transformation makes these solutions dependent 
only on time. For this situation, time for maximum growth of frozen layer and total time for 
freezing of this layer with its subsequent melting are derived. To validate the model it is 
converted to a solution of the past investigation. A close agreement is exhibited. 
 
 

2 Mathematical Model 
To estimate the time for the first step as described in the introduction, a suitable mathematical 
model is designed. Here, the additive is in the form of a plate of thickness 2b and at a uniform 
temperature Tai lower than its melting temperature, Taf before its immersion in the agitated melt 
bath contained in a ladle in which the bath is in a highly agitated state owing to falling stream of 
the melt during tapping or stirring in the ladle. This bath is assumed to remain at a constant 
temperature, Tb during the first step. Moreover, the plate additive has the melting temperature, 
Taf higher than the freezing temperature, Tmf of the bath material. For such a solid additive-melt 
bath system exhibited in Fig.1, Tai<Tmf<Taf<Tb and upon immersion of the plate additive, the 
melt of the bath immediately freezes onto the surface of the plate, the contact interface between 
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the frozen layer and the plate arrives at an equilibrium temperature, Te less than the additive 
melting temperature, Taf and the temperature gradient sets up onto the plate and the frozen layer 
sides. Due to passing of the immersion time, Te builds up, the frozen layer grows in thickness, 
the heat penetrates the additive. This happens when the rate of heat conduction to the plate due 
to the temperature gradient developed on its side remains more than the convective heat 
available from the bath. The deficient amount of the convective heat is met by the latent heat of 
fusion evolved due to freezing of the bath material onto the surface of the plate. Once the two 
rates of heat transfer become the same, the frozen layer growth ceases. After this time the 
convective heat available from the bath to the frozen layer is greater than the conductive heat 
transfer from the frozen layer to the plate. This renders the frozen layer to melt with further rise 
of the interface temperature and heating of the plate. Ultimately, the complete melting of the 
frozen layer occurs leaving the plate at an elevated temperature which is less than Taf. Heat 
transfer in this situation is regulated by one-dimensional conjugated transient heat conduction. 
Its non-dimensional integral form describing the temperature field within the heat penetration 
depth of the plate along with initial and boundary conditions can be written as 
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Fig. 1 Schematic of freezing and melting of bath material onto plate additive in an agitated 

bath 
 
 

As the agitated bath has a high value of heat transfer coefficient, it provides a large amount of 
convective heat, h(Tb-Tmf) owing to which a small amount of latent heat of fusion to balance the 
difference of the conducted heat to the plate and the convective heat available from the bath is 
required. It is affected by the development of the frozen layer of quite a small thickness [1, 8]. 
This condition makes the thermal resistance of the thin frozen layer insignificant with respect to 
the convective thermal resistance of the melt bath [9]. At any instant of time, such a feature sets 
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in a uniform temperature in the entire frozen layer thickness, dm which is the freezing 
temperature, Tmf of the bath because the freezing front in contact with the bath always remains at 
Tmf. Moreover, the contact interface temperature, Te between the plate and the frozen layer due 
to above fact is also at Tmf. These permit the frozen layer to act as a lump system [9-11] which 
due to remaining at Tmf does not absorb or release sensible heat. The conservation of energy to 
this lump leads to a balance between the sum of the latent heat of fusion evolved by freezing and 
convective heat supplied by the bath and the heat conducted to the additive. It takes the form 
 

tSdd /)( τξ  + )1( −bimB θ  = ,mnQ−  0, >= τξξm  with iim BBB =                           (5.) 
 
It is subjected to an initial condition 
 

0,0 == τξ                 (6.) 
 

The conjugated conditions at the interface between the additive plate and the frozen layer can be 
written as 
 

,/)( mnaa QB −=∂∂ ξθ  0,0 >== τξξ ma                              (7.) 
 

1=== ema θθθ , 0,0 >== τξξ ma                 (8.) 
 
Note that equations (1) to (8) form the mathematical model of the present problem. This type of 
model is identified as lump-integral since the frozen layer is assumed to be a lump and the 
additive is considered an integral system in the direction of heating. Governing equations (1) and 
(5) assume the uniform but different thermo-physical properties for the frozen layer and the plate 
additive whereas equations (7) and (8) are written when the surface of the plate is in perfect 
contact with the surface of the frozen layer with no interface resistance between them. These 
assumptions in the recent past investigation associated with freezing of the bath material onto 
the spherical [5, 6] and plate shaped additive [1, 12] having comparative thermal resistances of 
the bath with respect to the frozen layer provided acceptable solutions. These equations indicate 
the model dependence upon the independent parameters- initial temperature, θai of the additive, 
the bulk temperature, θb of the bath, the modified Biot number, Bim and the Stefan number, St. It 
is noted that the Bi represents the condition of the bath whereas St is the indicative of the phase-
change parameter of the bath material. 
 
 

3 Solution 
The present model exhibits that it is a moving phase-change problem owing to the presence of 
equation (5) and is coupled as a result of conjugating conditions, equations (7) and (8). These do 
not permit the model to give an analytical solution using exact analyses reported in the literature. 
In such a situation approximate analytical methods become of great significance and practical. 
One of these methods refer to integral method which yielded simple solutions in closed-form for 
melting or freezing and cooling or heating problems in previous investigations [13, 14] is 
applied. Also, in recently investigated other heating and phase-change problems [15-17], this 
method reduces them to initial value problems, the numerical solutions of which can be readily 
obtained using standard Runge-Kutta method. In view of this, the governing equation (1) for 
heating of plate additive has been already expressed in the integral format. For solution, it 
requires a prior knowledge of temperature field within the heated region of the additive which is 
assumed to be parabolic. 
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( )( )211 ηξθθθ aaiaia +−+=                      (9.) 
 

Note that such a profile is realistic since in the melting [15] and freezing [16] problems it 
yielded acceptable and accurate results. It satisfies the boundary conditions, equations (3) and 
(4). Employing equation (9), the integral equation (1) takes the form 
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It reduces to 
 

( )[ ] ( ) )(123/1 ηθτηθ Bdd aiai −=−            (10.) 
 

once equation (4) is applied. Similarly, use of equation (9) in the conjugating condition, equation 
(7) gives.  
 

( ) mnai QB −=− )(12 ηθ                     (11.) 
 

Substituting this equation in the energy balance equation (5) leads to 
 

tSdd /)( τξ + )1( −bimB θ  = ( ) )(12 ηθ Bai−                         (12.) 

 
It is noted that equation (12) for the frozen layer thickness, ξ gets coupled with equation (10) due 
to presence of η in it. These two equations (10) and (12) form simultaneous differential equation 
of first order in time, τ due to presence of a constant temperature difference (1- θai) giving a 
closed-from solution. Their closed-form solutions are often difficult to obtain. However, their 
examination indicates that equation (10) can be reduced to 
 

τη dd  = )(6 ηB                             (13.) 
 

Satisfying the initial condition, equation (2), it gives 
 

Bτη 12=                     (14.) 
 

To solve equation (12), it is combined with equation (10) leading to 
 

( )[ ] τξηθ dSd tai −− 3/1  = )1( −bimB θ             (15.)   
 

It readily gives a closed-form solution 
 

( ) tai Sξηθ −− 31  = τθ )1( −bimB                           (16.)   

 
It fulfills the initial conditions, equations (2) and (6). This solution is not an explicit function of 
τ, rather functions of τ and η. To overcome this equation (14) is applied to make equation (16) a 
function of time. 
 

tSξξ =* =  τθ )1( −− bimB + ( ) 3/121 Bai τθ−                                     (17.) 
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Equations (17) and (14) give, respectively, closed-form relations for the growth of the frozen 
layer, ξ and the heat penetration depth η in the additive in terms of τ measured just after the 
immersion of the additive in the bath. 
 
 

3.1 Maximum frozen layer thickness and its growth time 
To find the development of the maximum frozen layer thickness, dξ*/dτ found from the equation 
(17) is made zero. 
 

τξ dd * = )1( −− bimB θ + ( ) 06/121 2/1 =− −τθ Bai                      (18.) 
 

It gives 
 

( ) ( ){ }[ ] 3311 22
ofbiai CBB =−−= θθτ                         (19.) 

 

where, 
 

Bi =Bim B =  aKhb  and ( ) ( ){ }11 −−= biaiof BC θθ  = ( ){ } ( ){ }mfbaimfa TThbTTK −− /          (20.) 
 

Here, the Biot number, Bi represents the ratio of the conductive resistance of the additive and the 
convective resistance of the bath whereas Cof, designated as conduction factor, is the ratio of the 
heat conducted to the additive, Ka(Tmf-Tai)/b owing to the difference of the freezing temperature 
of the bath material and the initial temperature of the additive and the convective heat available 
from the bath, h(Tb – Tmf). Its values range from 0 to ∞ (0≤ Cof ≤ ∞). Zero indicates preheated 
additive at the freezing temperature of the bath material permitting no conductive heat transfer to 
the additive whereas ∞ signifies the bath at the freezing temperature of the bath material 
resulting non-availability of the convective heat from the bath. Using equation (19), equation 
(17) provides maximum frozen layer thickness 
 

( ) ( )[ ] ( )[ ] 31131 2*
max ofaibiai CB θθθξ −=−−=            (21.) 

 

since 02*2 <τξ dd , the condition for the maximum value of *ξ , is satisfied at such a time, 
which is hereafter called, τmax. 
 
 

3.2 Total time of freezing and subsequent melting of the bath material, tτ  
As in this time, τt the frozen layer, ξ*developed melts completely giving ξ*=0. Its substitution in 
equation (17) provides an expression for τt 
 

( )[ ] ( )[ ]131/12 −−= bimait BB θθτ  
 

It is rearranged to provide 
 

( ) ( ) ( ){ }[ ] ( ) ( ) ( ){ }[ ] ( ) 222 3/4113/4113/4 ofbiaibimait CBBBB =−−=−−= θθθθτ        (22.) 
 

Using equations (22) and (19), the time of melting, mτ  of the frozen layer can written as 
 

2
max oftm C=−= τττ              (23.) 
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Note that equation (19) indicates that the time for the growth of the maximum thickness of the 
frozen layer *

maxξ  is always 25% of the total time taken in freezing and its subsequent melting 
whereas equation (23) states that the melting of the frozen layer takes 75% of the total time. 
 

 
3.3 Condition for the additive to act as semi-infinite 
In several practical situations during the period, τt of freezing and melting of the bath material, 
the additive plate does not get completely heated owing to which the heat does not penetrate the 
central axis of the plate. In this condition the plate acts as semi-infinite and the heat penetration 
depth, η within it always remains η ≤ 1. Applying it to equation (14) leads to 
 
τt /B ≤ 1/12                   (24.) 
 

Substitution of the equation (24) in equation (22) provides  
 
Cof ≤1/4                    (25.) 
 

It is the requisite condition for the additive to remain semi-infinite during freezing and melting 
of the bath material. 
 
 

3.4 Reduction of solutions only as a function of time 
Since equations (19) to (23) are functions of conduction factor, Cof, they including equations 
(14) and (17) are transformed with respect to this factor reducing them to only a function of 
time. Using this concept, the growth of frozen layer thickness, equation (17) and the heat 
penetration depth equation (14) become respectively   
 

( )aicmcm θξξ −= 1***

cmcm ττ −= 312             (26.) 
 

cmcm τη 12= ,                         (27.) 
 

where, )(, 2**
ofcmofcm BCC ττξξ == ,    ofcm Cηη =      

whereas  time of maximum frozen layer thickness equation (19) and total time of freezing and 
melting equation (22) can be expressed respectively as    
 

3/1)( 2 == ofcm BCττ                      (28.) 
 

3/4)( 2 == oftct BCττ                      (29.) 

 
The growth for the maximum frozen layer thickness, equation (21) is changed to  
 

3/1)1(*
max

**
max =−= aicc θξξ ,       where, ofc C*

max
*
max ξξ =                      (30.) 

 

Although the freezing and melting of the bath material onto the surface of plate additive follows 
a complicated heat transfer process, this model enables to make the frozen layer growth, 
equation (26) and the heat penetration depth, η equation (27) only a function of time. 
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4 Model Validation 
To validate the present model, this problem is transformed to heating of the additive by the bath 
when no freezing of the bath material occurs onto the surface of the plate additive. This can be 
achieved once the bath is assumed to be highly agitated with heat transfer co-efficient h→∞, 
Biot number, Bi→∞ or the latent heat of fusion of the bath material is very high Lm→∞, St →0 
leading to growth of the frozen layer of insignificant thickness, ξ →0. The contact interface 
temperature between the insignificant frozen layer and the plate additive remains at the freezing 
temperature, Tmf of the bath material. These reduce the present problem of heating of the plate at 
a constant temperature, Tmf. These concepts vanish equation (17) without altering equation (14) 
providing  
 

,2/1
hDτη =  where, D= 12  = 3.46                (31.) 

 

The exact solution [18] gives D= 3.66 whereas the variational method [19] provided D=3.36. A 
close agreement is observed validating the present model. 
 
 

5 Results and Discussions  
The mathematical model of lump-integral form just developed for freezing and melting of the 
bath material around the surface of the plate shaped additive immersed in an agitated bath shows 
that this occurrence is regulated by the initial temperature, θai of the additive, the bath 
temperature, θb, the bath agitation represented by the Biot number, Bi, phase-change parameter 
of the bath material denoted by the Stefan number, St and the property-ratio, B of the additive-
bath system. However, in the closed-form solutions θai, , θb, B, and Bi appear as a conduction 
factor, Cof, equation (20). For different plate shaped additive-bath systems employed in 
steelmaking and cast iron preparation, values of these parameters appear in Table1. The 
conduction factor, Cof  ranges from 0 to ∞.  Cof =0 signifying no conductive heat transfer to the 
additive which, in turn, does not permit freezing of the bath material onto the additive leading to 
elimination of the first step of the freezing and melting. In practice it can be achieved by 
preheating the additive to the freezing temperature of the bath material (θai =1) before its 
immersion in the bath or increasing the bath agitation for a prescribed temperature, θai  of the 
additive. Cof =∞ indicates that the convective heat is not available from the bath. It happens 
when the bath temperature is maintained at the freezing temperature of the bath material (θb =1). 
Under this situation, the conductive heat required by the additive after its immersion in the bath 
is met by only evolution of latent heat of fusion due to freezing of the bath material. 
Consequently, the frozen layer continues to grow and melting of this layer never takes place. 
Due to these facts a smaller value of Cof  close to zero is preferred for growth of a small frozen 
layer thickness so that much less time is required for freezing with its melting. The Stefan 
number, St is the ratio of sensible heat and latent heat of fusion of the bath material. Its high 
value represents bath material of small latent heat of fusion leading to growth of large thickness 
of the frozen layer. In the closed-form solution for the frozen layer thickness it is taken per unit 
St, equation (17) termed as ξ* for making it applicable to any bath material. Further, ξ* with 
respect to the conduction factor Cof called *

cmξ becomes only a function of the initial 
temperature, θai of the additive, equation (26). The heat penetration depth, ηcm equation (27) is 
implicitly dependent on these factors. In these formats, the growth of *

cmξ to its maximum 
thickness takes time τcm=1/3 whereas total time τct for freezing to this maximum thickness and its 
melting is 4/3. The maximum thickness of the frozen layer assumes ( ) 3/1*

max aic θξ −= . These 
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forms have advantage of applying to any plate shaped additive and the bath materials. For the 
additive-bath systems of Table1 with the plate additive of given semi-thickness and initial 
temperature, total time of freezing and melting along with the maximum thickness of the frozen 
layer developed can be readily obtained employing equations (22) and (21), respectively. 
 

Table 1 Thermo-physical properties of the Bath materials [1,5,20]. 
Bath material Km  ρm Cpm Lm x10-3 Tmf Tb 

 
Wm-1K-1 Kgm-3 JKg-1K-1 JKg-1 °C °C 

Cast-Iron ~4%C 51.9 7304 417 275.7 1160 1550 

Hot-Metal 35 6850 670 275.7 1150 1500 
Slag 1.06 2890 920 544 1500 1600 

 
 

Table 2 Thermo-physical properties of the Solid additive [1,5,20]. 
 
Solid additive 

Ka ρa Cpa Tai b x103 
Wm-1K-1 Kgm-3 JKg-1K-1 0C m 

Ni 90 8906 449.5 20 
40 

5  
125 

Ferro-Magnese 7.5 7200 700 20 
40 

5  
125 

DRI 2.13 2600 820 20 
40 

5  
125 

 
 

Table 3 Non-dimensional parameters of Bath-solid additive system [1,5,20]. 
Bath-solid additive system θai x103 θb B *Bi Cof St 

Cast iron ~4%C and Ni 17.2 
34.5 

1.33 0.44 0.33  
8.33 

8.77  
0.34 

1.75 

Hot metal and Ferro-Magnese 17.4 
34.8 

1.3 4.25 4 
100 

0.81 
0.03 

2.79 

Slag and DRI 
 

13.3  
26.6 

1.06 
 

0.62 
 

14.08  
352.1 

1.05 
0.04  

2.54 
 

*Based on heat transfer co-efficient, h= 6000 Wm-2k-1 

 
 

5.1 Effect of conduction factor, Cof 

Displayed in Fig.2 are time variant growth of frozen layer thickness per unit St, ξ
* and the heat 

penetration depth, η in the additive for a prescribed initial temperature, θai of the additive. The 
conduction factor, Cof   is taken as a parameter. It indicates that for each Cof  the freezing and 
melting assumes a parabolic behavior with the height of the apex of the parabola signifying the 
maximum thickness of the frozen layer. Decreasing Cof decreases the height of the apex of the 
parabola and in turn, the maximum thickness of the frozen layer. Moreover, the apex shifts 
towards zero time and both the total time of freezing and melting, equation (22) and the time 
taken to attain the maximum thickness, equation (19) decrease with square of Cof . The heat 
penetration depth at the time of completion of the freezing and melting also diminishes. These 
findings appear to be realistic since for a prescribed initial temperature, θai of the additive 
allowing a certain amount of heat to be conducted to the additive, the reduction in Cof  increases 
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the availability of convective heat from the bath for a given bath temperature. This increases the 
Biot number and makes the bath more agitated. Also, as the heat conducted to the additive is 
sum of the convective heat available from the bath and the latent heat of fusion liberated owing 
to the freezing of the bath material onto the additive during the development of the frozen layer, 
increased convective heat from the bath by the reduced Cof  requires less amount of heat liberated 
as the latent heat of fusion to meet the above desired conductive heat. It leads to a growth of 
smaller thickness of the frozen layer, Fig.2. 
 

 
Fig. 2 Effect of Cof, on time dependent frozen layer thickness, heat penetration depth and 

total time of freezing and melting for additive at Өai 
 
 

5.2 Influence of initial temperature of the additive, θai 

Illustrated in Fig.3 are the frozen layer thickness, ξ* and the heat penetration depth, η as 
functions of time for different values of initial temperature, θai of the additive. They are for a 
particular conduction factor, Cof. Although the freezing and melting follows the parabolic 
behavior for each θai, with increasing initial temperature, θai, the maximum frozen layer 
thickness, equation (21) decreases, but the time taken to attain this thickness, equation (19), total 
time of freezing and melting, equation (22) and the heat penetration depth remain unaltered. 
When the initial temperature, θai of the additive is at the freezing temperature of the bath 
material, no freezing occurs. The following facts support these predictions. For a specified value 
of conduction factor, Cof decreasing θai increases the heat conduction to the additive and in order 
to maintain this value of Cof , the convective heat from the bath is to be increased to the amount 
by which the heat conduction is increased. As a result, the requirement of latent heat of fusion is 
increased leading to formation of larger thickness of the frozen layer. Moreover, as the value of 
Cof , a ratio of conductive heat transfer to the additive and the convective heat supplied  by the 
bath does not change despite the change in the values of these two heat transfer due to change in 
θai , the requirement of time for development of the frozen layer with its subsequent melting 
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remains the same. The growth of the frozen layer and its melting, however, gets speed up owing 
to an increased temperature difference between the bath and the additive once the initial 
temperature, θai of the additive is decreased. 
 

 
Fig. 3 Influence of initial  temperature, Өai of additive on time of growth of frozen layer, 

total time of freezing and melting and heat penetration depth for a given conduction 
factor, Cof of bath-additive system 

 
 

 
Fig. 4 Time for development of frozen layer, heat penetration depth including total time of 

freezing and melting. They are for any plate additive having any initial temperature 
 
 

5.3 Growth of frozen layer applicable to any plate additive and bath materials 
With respect to the conduction factor, Cof, ξ

* per unit difference of temperature between the 
freezing temperature of the bath material and the initial temperature, θai of the additive 
represented by **

cmξ , equation (26) and the heat penetration depth denoted by ηcm equation (27) 
become only the function of time. Their plots with time, Fig.4 assume the behavior similar to 
those appear in Figs.2 and 3. They act as universal graphs and applied to any plate shaped 
additive-bath materials provided the freezing and subsequent melting of the bath material onto 
the additive takes place. In this situation, the maximum frozen layer thickness, **

maxcξ =1/3, 
equation (30) with its time of formation, τcm=1/3, equation (28) whereas the total time of 
freezing of this thickness with its subsequent melting is τct=4/3. For any of the additive-bath 
system contained in Table1, these graphs or equations (30), (28), (29) readily give the 
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dimensional values of frozen layer thickness, time for its maximum growth and total time of 
freezing and melting once the data of the Table1 is employed. They are beneficial for industrial 
applications.  
 
 

6 Conclusions 
A non-dimensional lump-integral model evolved for the first step of the freezing and melting of 
the bath material onto the surface of the plate shaped additive in an agitated bath gives closed-
form solutions for the growth of the frozen layer with its subsequent melting and the heat 
penetration depth in the plate additive with the time measured immediately after their 
occurrence. They are regulated by conduction factor, Cof and θai. Decreasing Cof reduces the 
growth of maximum thickness of the frozen layer, its time of growth and the total time of 
freezing with its melting. Increasing the initial temperature of the additive, θai the growth of the 
maximum frozen layer thickness reduces. However, its time of growth and total time of freezing 
with its melting almost remains the same. This step almost disappears and the frozen layer 
thickness becomes almost zero once the bath is assumed to be highly agitated Cof →0. With 
respect to Cof , these solutions lead to frozen layer and the heat penetration depth only a function 
of time which are applied to any additive-bath system provided the additive is plate shaped. In 
this situation, the time taken for the maximum thickness of the frozen layer, **

maxcξ is τcmax=1/3 
whereas the total time taken for the first step is τct=4/3. 
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Appendix: 
b     semithickness of the plate, m 
B     property ratio, (KmCm/KaCa) 
Bi    Biot number, (hb/Ka) 
Bim Modified Biot no., (hR0/Ka)*(K aCa/KmCm ) 
C    heat capacity (ρCp), Jm-3K-1  

Cp    Specific heat, JKg-1K-1 
Cof    conduction factor, (1- θai)/ Bi (θb -1) 
d   heat penetration depth or frozen layer thickness at any time, m 
h      heat transfer coefficient, Wm-2K-1  

K       thermal conductivity, Wm-1K-1
  

L        latent heat of fusion, JKg-1 
Qm     heat transfer from the frozen layer to the additive, Wm-2 

Qmn  non-dimensional heat transfer from the frozen layer to the additive,  
(Qmb/Ka Tmf)/B 
St       Stefan number, (CmTmf / Lm ρm) 
t       time, s 
T      temperature, K 
x    distance along the heat penetration depth or frozen layer, m 
Greek letters 
α      thermal diffusivity, m2s-1 
ξ   non-dimensional thickness of the frozen layer, (Cmdm/Cab) or distance along frozen 

layer, (Cmxm/Cab) or the additive (xa/b) 
η    non-dimensional heat penetration depth in the additive at any time, (da/ b) 
ρ     density, Kgm-3 
θ     non-dimensional temperature, (T/ Tmf ) 
τ      non-dimensional time, (KmCm/Ca

2b2)t 
Subscript 
a     plate additive 
ai    initial condition of additive 
b     bulk condition 
e at the interface between the additive and the frozen layer at time. 

m    frozen bath material 


