
Acta Metallurgica Slovaca, Vol. 19, 2013, No. 2, p. 94-104                                                                                           94 

 

DOI 10.12776/ams.v19i2.93 p-ISSN 1335-1532 
 e-ISSN 1338-1156 

 

APPLYING VARIOUS TRAINING ALGORITHMS IN DATA ANALYSIS OF NANO 
COMPOSITES 
 
Ali Asghar Tofigh1), Mohsen Ostad Shabani1)*  
1)Materials and Energy Research Center (MERC), Tehran, Iran 
 
Received: 09.03.2012  
Accepted: 26.11.2012 
 
*Corresponding author: e-mail: vahid_ostadshabany@yahoo.com, Tel: +98 912 563 6709, Fax: 
+98 261 6201888, Materials and Energy Research Center (MERC), Tehran, Iran  
 
Abstract 
In this study, SiC nano-particles were incorporated into the A356 aluminum alloy to fabricate 
metal matrix nano composites (MMNCs) with uniform reinforcement distribution. The 
tribological and mechanical properties of A356 nano composites were experimentally 
investigated. It was revealed that the presence of nano-SiC reinforcement led to significant 
improvement in hardness, 0.2% yield strength and UTS. The highest yield strength and UTS was 
obtained by 3.5 vol. % of SiC nano-particles. The wear sliding test disclosed that the wear 
resistance of the nano SiC reinforced composites is higher than that of the unreinforced alloy. 
The system accuracy of each artificial neural network training algorithm in finite element 
technique modeling of nano composites behaviors was then investigated.  
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1 Introduction 
Important AMC applications in the ground transportation (auto and rail), thermal management, 
aerospace, industrial, recreational and infrastructure industries have been enabled by functional 
properties that include high structural efficiency, excellent wear resistance, and attractive 
thermal and electrical characteristics [1-3]. While in composites reinforced with continuous 
fibers, strengthening is associated with load transfer from the matrix to the fiber, it is associated 
with the high dislocation density in the matrix of composites reinforced with whisker and 
particulate [4-7].  
Micro size Ceramic powders and fibers were widely used in fabrication of Al-based composites 
to improve the ultimate tensile and the yield strengths of the metal. However, the ductility of the 
MMCs deteriorates significantly with high ceramic particle concentration. It will be attractive to 
produce as-cast lightweight bulk components of MMNCs with uniform reinforcement 
distribution and structural integrity. It is expected that the strength of aluminum reinforced by 
ceramic nano-particles, would be enhanced considerably, while the ductility of the aluminum 
matrix is retained. However, it is extremely difficult to obtain uniform dispersion of nano-sized 
ceramic particles in liquid metals due to high viscosity, poor wettability in the metal matrix, and 
a large surface-to-volume ratio [6-9]. 
Experimental results showed a relatively uniform distribution of nano particles and more than 
50% improvement in yield strength of A356 alloy only with 2.0 wt. % of nano-sized SiC 
particles. 
Zhao et al. [2] characterized the properties and deformation behavior of (Al2O3+Al3Zr) np/Al 
nano-composites produced by magneto-chemical melt reaction. It is reported that elongation, 
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ultimate tensile strength and yield strength of nano-composites are enhanced with increasing of 
particulate volume fraction, and are markedly higher than that of Al composites synthesized by 
micro size particles. 
ANN theory has been developed in the form of parallel distributed network models based on 
biological learning process of the human brain. There are numerous applications of ANN in data 
analysis, pattern recognition and adaptive control. In recent years, there has been a growing 
interest in applying artificial neural networks, a branch of modern information technology, to 
engineering fields for solving various complex problems [10-16]. In this paper, the mechanical 
and tribological properties of A356 composite reinforced with nano SiC particulates were first 
experimentally investigated and then the combination of FEM with ANN is implemented for 
modeling of these properties. The results have shown that Bayesian regularization learning 
algorithms gave the best result for this study. 
 
 

2 Experimental conditions 
Commercial casting aluminum alloy (A356) was selected as the matrix due to its good 
castability. The chemical composition of A356 is follows: (wt.%): 7.5 Si, 0.42 Mg, 0.03 Zn, 0.01 
Cu, 0.106 Fe and Al (balance). A mixture of nano-SiC and aluminum particles with respectively 
average particle size of 50 nm and 16 µm was used as the reinforcement. Magnesium additive in 
powder form was also used as a wetting agent. The addition of 1 wt. % magnesium to the melt 
promote wetting by reducing the surface tension of the melt, decreasing the solid-liquid 
interfacial energy of the melt, or inducing wettability by chemical reaction.A stir casting setup 
consisting of a resistance furnace and a stirrer assembly was used for synthesizing the 
composites. The aluminium ingot was placed in a graphite crucible and heated to 750oC (above 
the alloy liquidus temperature) using the resistance furnace. Then the step casting was poured 
into the CO2-sand mould. There is a nitrogen supply to the crucible in order to minimize the 
oxidation of molten aluminum.  
The porosities of the produced composites were evaluated from the difference between the 
expected and the observed density of each sample. To study the hardness, the Brinell hardness 
values of the samples were measured on the polished samples using a ball with 2.5mm diameter 
at a load of 31.25 kg. The dry sliding wear test was carried out with sliding distance of 2000 m 
and under the load of 10 N. At least three wear samples were tested for each specimen. The 
slider disc was case hardened steel with 63 HRC to a depth of 3 mm. Composite were made into 
pin having 6 mm in diameter and 25 mm in height. The pins were put in contact with the slider. 
The pins were cleaned thoroughly by ultrasonic prior and after the tests with acetone and then 
were weighed using an electronic balance with an accuracy of 0.1 mg. All tests were performed 
at room temperature (21 °C, relative humidity 55%).      
The tensile specimens were machined from composite rods according to ASTM.B 557 standard. 
For each volume fraction of SiC particles, three samples were tested. The composite rods were 
machined to compressive specimens with a diameter of 12 mm and height of 18 mm 
(height/diameter=3/2). Compression tests were conducted using a Universal Testing Machine 
(Schimadzu) at the strain rate of 10−3 and room temperature. 
 
 

3 Cooling rate and temperature gradient  
The numerical model is applied to simulate the solidification of alloys, the mathematical 
formulation of this solidification problem is given [17]:  
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Where ρ the density (kg/m3), C the specific heat (J/kg K), T the temperature (K), t the time (s), K 
is the thermal conductivity (W/m K), L is the latent heat (J/kg) and fs the local solid fraction. The 
fraction of solid in the mushy zone is estimated by the Scheil equation, which assumes perfect 
mixing in the liquid and no solid diffusion. With the liquidus and solidus having constant slopes, 
fs is then expressed as: 
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Where Tf is the melting temperature (K), TL the liquidus temperature (K), and k0 the partition 
coefficient. Then [17]: 
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The latent heat released during solidification of the remaining liquid of eutectic composition was 
taken into account by a device, which considers a temperature accumulation factor. 
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Where C′ can be considered as a pseudo-specific heat given by: 
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Where the subscripts L, S and M refer to liquid, solid and mushy, respectively. The other 
properties such as thermal conductivity and density in the mushy zone are described similarly as 
the specific heat: 
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SslsM ff ρρρ +−= )1(                                                                                                (8) 
 

The finite element method (FEM) was used for discretization. Based on the above transient 
temperature model, the FEM method is used to calculate the transient temperature, cooling rate 
and temperature gradient.  
 
 

4 Neural network training algorithms 
The neural network modelling and simulation procedures implemented in this paper were done 
in five steps as follows:  

• data collection 
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•  pre-processing of collected data 
•  neural network training 
• testing of the trained neural network model  
•  predictive simulations using the trained neural network models. 

Various training algorithms can be utilized in neural network applications. It is hardly difficult 
to predict which of these learning will be the fastest one for any problem. Generally, it depends 
on some factors; the structure of the networks, in other words, the number of hidden layers, 
weights and biases in the network, aimed error at the learning, and application area, for instance, 
pattern recognition or classification or function approximation problem [1, 11]. However, the 
data structure and uniformity of the training set are also important things that affect the system 
accuracy and performance. Some of famous train algorithms are as follow [18-28]: 

• Bayesian regularization: is a network training function that updates the weight and bias 
values according to LM optimization. It minimizes a combination of squared errors and 
weights, and then determines the correct combination so as to produce a network that 
generalizes well. The process is called Bayesian regularization. 

• Batch unsupervised weight/bias training: trains a network with weight and bias learning 
rules with batch updates. Weights and biases updates occur at the end of an entire pass 
through the input data. 

• Cyclical order incremental update: trains a network with weight and bias learning rules 
with incremental updates after each presentation of an input. Inputs are presented in 
cyclic order. 

• Powell-Beale conjugate gradient back propagation: is a network training function that 
updates weight and bias values according to the conjugate gradient back propagation 
with Powell-Beale restarts. 

After satisfactory training, the neural network models were used for further simulations and 
predictions of different correlations and phenomena in processing-structure-properties 
relationships. In the analysis of performance of various training algorithms, the same prepared 
learning and test set were used in the training processes of each learning algorithm. The 
performance analysis were done from the viewpoint of training duration, error minimization and 
prediction achievement.  The ANN predictions were directly compared with the experimental 
obtained data to evaluate the learning performance. Mean absolute percentage error (MAPE), 
which is statistical and scientific error computation method, was used to analyze the error. 
 

         
 
Fig.1 Variations of porosity with Vol. % 

SiC          
Fig.2 Compressive yield strength  with 

Vol. % SiC 



Acta Metallurgica Slovaca, Vol. 19, 2013, No. 2, p. 94-104                                                                                           99 

 

DOI 10.12776/ams.v19i2.93 p-ISSN 1335-1532 
 e-ISSN 1338-1156 

 

5 Results and discussion  
Comparison of the measured density of the cast alloy and the composites with that of their 
theoretical density determined the amount of porosity. Fig. 1 indicates that increasing amount of 
porosity is observed with increasing the volume fraction of composites. The porosity level 
increased, since the contact surface area was increased. In the other word, higher degree of 
defects and micro-porosity is observed at composites with higher SiC content which is the result 
of increase in the amount of interface area [9, 29, 30]. 
 

        
  Fig. 3 Tensile yield strength versus vol. % SiC        Fig. 4 The UTS versus vol. % SiC 
 
 
Figs.2, 3 and 4 display compressive yield strength, tensile yield strength and UTS of the 
composites, respectively. It is believed that the great enhancement in compressive and tensile 
strength observed in these composites is due to good distribution of the nano-SiC particles and 
low degree of porosity which leads to effective transfer of applied tensile load to the uniformly 
distributed strong SiC particulates. The grain refinement and strong multidirectional thermal 
stress at the Al/SiC interface are also important factors, which play a significant role in the high 
strength of the composites. SiC particles have grain-refined strengthening effect, since they act 
as the heterogeneous nucleation catalyst for aluminum which is improved with increase in the 
volume fraction [9, 31-33]. 
The difference between the coefficient of thermal expansion (CTE) values of matrix and ceramic 
particles generates thermally induced residual stresses and increases dislocations density upon 
rapid solidification during the fabrication process. The interaction of dislocations with the non-
shearable nano-particles increases the strength level of composite samples. According to the 
Orowan mechanism, the nano-SiC particles act as obstacles to hinder the motion of dislocations 
near the particles in the matrix. This effect of particles on the matrix is enhanced gradually with 
the increase of particulate volume fraction [2, 31]. 
According to the results of this experiment, quite significant improvement in tensile strength is 
noted initially when particles are added; however, further increase in SiC content leads to 
reduction in strength values. The weakening factors of mechanical properties might be 
responsible for this including particles clusters and porosity. Hereby, it is believed that 
strengthening and weakening factors of mechanical properties could neutralize the effect of each 
other and thus, the composite containing 3.5 vol. % SiC exhibits maximum tensile strength.  The 
thermal mismatch residual stress generated due to difference in the thermal expansion 
coefficients between the matrix alloy and the reinforcing phase is believed to enhance the 
compressive property more than tensile property of composite. This might be the reason that 
though the maximum tensile flow stress is observed at 3.5 vol. % SiC, increasing volume 
fraction from 3.5 to 4.5 vol. % leads to increment in compressive flow stress [9, 31]. 
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Fig. 5 Elongation versus vol. % SiC       Fig. 6 The hardness versus vol.% SiC 
 

 
Normally micron-sized particles are used to improve the ultimate tensile and the yield strengths 
of the metal. However, the ductility of the MMCs deteriorates significantly with high ceramic 
particle concentration [35-37]. 
Fig.5 shows that the addition nano-particles deteriorates the ductility of A356 alloy. The stir 
casting method that is used in the present work to produce the nano-composites can most 
probably create different interfaces between nano-particles and matrices and thus, encourage 
crack initiation and propagation [38]. It is also noted that the elongation remain rather constant 
with the addition of nano particles. This is consistent with the findings of Hassan and Gupta [39, 
40]. 
The results of hardness for Al/nano-SiC composites are summarized in Fig. 6. It is clear from 
the graph that the hardness of the composites is higher than that of the non-reinforced alloy.  The 
higher hardness of the composites could be attributed to the fact that SiC particles act as 
obstacles to the motion of dislocation. The hardness increment can also be attributed to reduced 
grain size. As shown, hardness increases with the amount of SiC present particles. It is believed 
that since SiC particles are harder than aluminum alloy, their inherent property of hardness is 
rendered to the soft matrix [32, 33].  
The weight loss versus sliding distance of the specimens is shown in Fig. 7. It is clear that the 
weight loss has a declining trend with increasing the particles volume fraction. This result is 
consistent with the rule that in general, materials with higher hardness have better wear and 
abrasive resistance [41]. 
The results show that the wear of the composites decreases with increasing SiC volume fraction. 
It is generally believed that incorporation of hard particles to aluminum alloys contributes to the 
improvement of the wear resistance of the base alloy to a great extent [42]. SiC hard particles 
resist against destruction action of abrasive and protect the surface, so with increasing its 
content, the wear resistance enhances but it seems this enhancement continues until the 
reinforcement can improve the mechanical properties such as hardness e.g. in case of nano-sized 
particle clustering, the trend of wear resistance improvement may be affected by the particle 
agglomeration. 
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Fig. 7 The weight loss versus sliding distance           Fig. 8 The Fe content on the worn surfaces. 
 
 

 
Fig. 9 Schematic representation of the neural network architecture 

 
 
In the composite, the reinforcement particles support the Load, decrease the contact area 
between the pin and counter disc surface and prevent the scratch and cut from the surface [43]. 
This is probably the main reason for the observed enhancement in wear resistance of the 
composite. 
Some researchers have shown that for loads below 10 N, Al2O3 and SiC reinforcement increased 
the wear resistance of Al and Mg alloy matrix composites due to the load bearing capacity 
improvement of the particulates and the formation of a transfer layer which protect the surface 
from abrasion [41, 44]. Fig. 8 shows the Fe content variation on the worn surface with SiC 
content. It is observed that the formation of iron-rich layers on the contact surfaces increases 
with increasing the SiC content. 
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Fig. 10  Evaluation of the training performance of the networks for different training algorithms 

according to mean absolute percentage error values with, one hidden layer (a), two 
hidden layers (b) 

 
 

The input and output data set of the model is illustrated schematically in Fig. 9. In Fig. 10, 
obtained mean absolute percentage error (MAPE) values for training data were given for each 
training algorithm. The obtained error values for different number of neurons in the hidden 
layers and number of hidden layers were analyzed and given, graphically. This figure also gives 
information about the accuracy of four famous training algorithms depending on the number of 
neurons in the hidden layers and number of hidden layers. It is evident from this figure; the least 
error value was obtained by using Bayesian regularization training algorithm with 1 hidden layer 
and 6 neurons. Cyclical order incremental update with 1 hidden layer and 8 neurons in the 
hidden layers follows Bayesian regularization training algorithm. Normally for most problems 
one hidden layer would be good enough. Using more than one hidden layer actually does not 
lead to a good model as they are very likely to over fit the data. The much error was obtained 
from the Batch unsupervised weight/bias training and Powell-Beale conjugate gradient back 
propagation. The Bayesian regularization was found to be the fastest training algorithm, 
however it requires more memory with the same error convergence bound compared to training 
methods. MAPE is a good criterion to have information about learning performance. The 
iterations were continued until it is decided that the minimum MAPE error is obtained. 
 In addition, success in the algorithms depends of the user dependent parameters learning rate 
and momentum constant. Faster algorithms such as Bayesian regularization use standard 
numerical optimization techniques. These algorithms eliminate some of the disadvantages above 
mentioned. Bayesian regularization method is in fact an approximation of the Newton’s method. 
The algorithm uses the second order derivatives of the cost function so that a better convergence 
behavior can be obtained. In the ordinary training method, only the first-order derivatives are 
evaluated and the parameter change information contains solely the direction along which the 
cost is minimized, whereas the Bayesian regularization technique extracts a biter parameter 
change vector. 
Fig. 11 shows the efficacy of the optimization scheme by comparing the prediction results with 
the experimental values. There is a convincing agreement between experimental values and 
predicted values for elongation and weight loss of nano composite for Bayesian regularization 
training algorithm. 
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Fig. 11 Comparison between the experimental and predicted values: Elongation (a) and Weight 

loss (b) 
 
 

6 Conclusion  
The effects of SiC reinforcement on hardness, tensile, compressive and wear properties of the 
composites were investigated. The addition of nano-particles also resulted in significant 
improvements in wear of the composites. Different strengthening mechanisms contributed in 
improvements of tensile and compressive behavior of the composites including Orowan 
strengthening, grain refinement, accommodation of CTE mismatch between the matrix and the 
particles, and the load bearing effects. Tribological and mechanical properties are considered to 
be related to cooling rate, temperature gradient and volume percentage of nano-SiC particles. 
The FEM method is used for discretization and to calculate the transient temperature field of 
quenching. It is very difficult to generalize which training algorithm of the neural network will 
be the fastest one and can present a very good performance for any given problem. However the 
results of this study show that an ANN with 6 neurons in 1hidden layers with Bayesian 
regularization method give the best properties prediction of nano composites.  
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