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Abstract

In this study, SiC nano-particles were incorporated the A356 aluminum alloy to fabricate
metal matrix nano composites (MMNCs) with uniforreinforcement distribution. The
tribological and mechanical properties of A356 naoomposites were experimentally
investigated. It was revealed that the presenceanib-SiC reinforcement led to significant
improvement in hardness, 0.2% yield strength an®.Ulhe highest yield strength and UTS was
obtained by 3.5 vol. % of SiC nano-particles. Theawsliding test disclosed that the wear
resistance of the nano SiC reinforced compositésgler than that of the unreinforced alloy.
The system accuracy of each artificial neural neltwpaining algorithm in finite element
technique modeling of nano composites behaviorsthes investigated.
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1 Introduction

Important AMC applications in the ground transptiota (auto and rail), thermal management,
aerospace, industrial, recreational and infrastinecindustries have been enabled by functional
properties that include high structural efficien@xcellent wear resistance, and attractive
thermal and electrical characteristics [1-3]. Whitecomposites reinforced with continuous
fibers, strengthening is associated with load fearfsom the matrix to the fiber, it is associated
with the high dislocation density in the matrix cbmposites reinforced with whisker and
particulate [4-7].

Micro size Ceramic powders and fibers were widedgdiin fabrication of Al-based composites
to improve the ultimate tensile and the yield sités of the metal. However, the ductility of the
MMCs deteriorates significantly with high ceramiarficle concentration. It will be attractive to
produce as-cast lightweight bulk components of MMN@ith uniform reinforcement
distribution and structural integrity. It is expedtthat the strength of aluminum reinforced by
ceramic nano-particles, would be enhanced conditleravhile the ductility of the aluminum
matrix is retained. However, it is extremely diffitto obtain uniform dispersion of nano-sized
ceramic particles in liquid metals due to high weisity, poor wettability in the metal matrix, and
a large surface-to-volume ratio [6-9].

Experimental results showed a relatively uniformtritbution of nano particles and more than
50% improvement in yield strength of A356 alloy ynkith 2.0 wt. % of nano-sized SiC
particles.

Zhao et al. [2] characterized the properties arfdrd@tion behavior of (ADs+AlsZr) np/Al
nano-composites produced by magneto-chemical realttion. It is reported that elongation,
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ultimate tensile strength and yield strength ofaczaomposites are enhanced with increasing of
particulate volume fraction, and are markedly higihan that of Al composites synthesized by
micro size particles.

ANN theory has been developed in the form of patalistributed network models based on
biological learning process of the human brain.rétere numerous applications of ANN in data
analysis, pattern recognition and adaptive conirolrecent years, there has been a growing
interest in applying artificial neural networksbeanch of modern information technology, to
engineering fields for solving various complex desbs [10-16]. In this paper, the mechanical
and tribological properties of A356 composite reickd with nano SiC particulates were first
experimentally investigated and then the combimatib FEM with ANN is implemented for
modeling of these properties. The results have shthwat Bayesian regularization learning
algorithms gave the best result for this study.

2 Experimental conditions

Commercial casting aluminum alloy (A356) was se&dcts the matrix due to its good
castability. The chemical composition of A356 iidas: (wt.%): 7.5 Si, 0.42 Mg, 0.03 Zn, 0.01
Cu, 0.106 Fe and Al (balance). A mixture of nanG-8hd aluminum particles with respectively
average particle size of 50 nm andpib was used as the reinforcement. Magnesium additive
powder form was also used as a wetting agent. @Héien of 1 wt. % magnesium to the melt
promote wetting by reducing the surface tensiontla& melt, decreasing the solid-liquid
interfacial energy of the melt, or inducing wettipiby chemical reaction.A stir casting setup
consisting of a resistance furnace and a stirrserably was used for synthesizing the
composites. The aluminium ingot was placed in @lgjta crucible and heated to P&0(above
the alloy liquidus temperature) using the resistafirnace. Then the step casting was poured
into the CQ@-sand mould. There is a nitrogen supply to the ibfedn order to minimize the
oxidation of molten aluminum.

The porosities of the produced composites wereuatedl from the difference between the
expected and the observed density of each samplstuly the hardness, the Brinell hardness
values of the samples were measured on the polsiegles using a ball with 2.5mm diameter
at a load of 31.25 kg. The dry sliding wear tess warried out with sliding distance of 2000 m
and under the load of 10 N. At least three wearpdasnwere tested for each specimen. The
slider disc was case hardened steel with 63 HRCdepth of 3 mm. Composite were made into
pin having 6 mm in diameter and 25 mm in heighte Pins were put in contact with the slider.
The pins were cleaned thoroughly by ultrasonic paiod after the tests with acetone and then
were weighed using an electronic balance with aur@cy of 0.1 mg. All tests were performed
at room temperature (21 °C, relative humidity 55%).

The tensile specimens were machined from compuosite according to ASTM.B 557 standard.
For each volume fraction of SiC particles, thremgies were tested. The composite rods were
machined to compressive specimens with a diametel2omm and height of 18 mm
(height/diameter=3/2). Compression tests were coteduusing a Universal Testing Machine
(Schimadzu) at the strain rate of 1@nd room temperature.

3 Cooling rate and temperature gradient
The numerical model is applied to simulate the dsiddiation of alloys, the mathematical
formulation of this solidification problem is givgh7]:
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pCW= KDZT(x,y,z,t)+pL% )

Wherep the density (kg/r¥), C the specific heat (J/kg KJ, the temperature (K},the time (s)K
is the thermal conductivity (W/m K}, is the latent heat (J/kg) afithe local solid fraction. The
fraction of solid in the mushy zone is estimatedtiy Scheil equation, which assumes perfect
mixing in the liquid and no solid diffusion. Withe liquidus and solidus having constant slopes,
fs is then expressed as:

Tf

-T
fg=1-(= )l/(ko-l) 2
T¢ _Tliq

WhereT; is the melting temperature (KJ, the liquidus temperature (K), ag the partition
coefficient. Then [17]:

of _ 1 ( T-T )(2—k0)/(k0—1)5_T 3)
& (ko =D(T; —Tig) Tr —Tig ot

The latent heat released during solidificationha&f temaining liquid of eutectic composition was
taken into account by a device, which consideengerature accumulation factor.

pC,(’)T(x,

v,z,t) - of
— = <~ =KO“T(x,y,z,t) +pL— 4
3t xy,zt)+p 5 (4)

WhereC' can be considered as a pseudo-specific heat given b

C'= CM - L%. (5)

Cu = (- f)C + fCy (6)

Where the subscripts L, S and M refer to liquidlidsand mushy, respectively. The other
properties such as thermal conductivity and densithie mushy zone are described similarly as
the specific heat:

Kn =@-f5)K, + fKg )
Pm = (1_ fs)pl + fsps (8)

The finite element method (FEM) was used for digzation. Based on the above transient
temperature model, the FEM method is used to cleuhe transient temperature, cooling rate
and temperature gradient.

4 Neural network training algorithms
The neural network modelling and simulation procedumplemented in this paper were done
in five steps as follows:

» data collection
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e pre-processing of collected data

e neural network training

 testing of the trained neural network model

e predictive simulations using the trained neuraiwoek models.
Various training algorithms can be utilized in redunetwork applications. It is hardly difficult
to predict which of these learning will be the &sitone for any problem. Generally, it depends
on some factors; the structure of the networkspthrer words, the number of hidden layers,
weights and biases in the network, aimed erronetdarning, and application area, for instance,
pattern recognition or classification or functioppeoximation problem [1, 11]. However, the
data structure and uniformity of the training set also important things that affect the system
accuracy and performance. Some of famous trairrighgas are as follow [18-28]:

e Bayesian regularization: is a network training fim that updates the weight and bias
values according to LM optimization. It minimizeg@mbination of squared errors and
weights, and then determines the correct combinamas to produce a network that
generalizes well. The process is called Bayesigulagization.

< Batch unsupervised weight/bias training: traingavork with weight and bias learning
rules with batch updates. Weights and biases updateur at the end of an entire pass
through the input data.

e Cyclical order incremental update: trains a netwwith weight and bias learning rules
with incremental updates after each presentatioanofnput. Inputs are presented in
cyclic order.

* Powell-Beale conjugate gradient back propagatisra network training function that
updates weight and bias values according to thgugate gradient back propagation
with Powell-Beale restarts.

After satisfactory training, the neural network ratedwere used for further simulations and
predictions of different correlations and phenomeim processing-structure-properties
relationships. In the analysis of performance afous training algorithms, the same prepared
learning and test set were used in the trainingcgsses of each learning algorithm. The
performance analysis were done from the viewpdintaining duration, error minimization and
prediction achievement. The ANN predictions weneatly compared with the experimental
obtained data to evaluate the learning performakizan absolute percentage error (MAPE),
which is statistical and scientific error computatmethod, was used to analyze the error.
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5 Resultsand discussion

Comparison of the measured density of the casy allod the composites with that of their

theoretical density determined the amount of ptyoBig. 1 indicates that increasing amount of
porosity is observed with increasing the volumectim of composites. The porosity level

increased, since the contact surface area wasaseue In the other word, higher degree of
defects and micro-porosity is observed at compesilih higher SiC content which is the result
of increase in the amount of interface area [9,309,
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Fig. 3 Tensile yield strength versus vol. % SiC Fig. 4 The UTS versus vol. % SiC

Figs2, 3 and 4 display compressive yield strength, tensile yistdength and UTS of the
composites, respectively. It is believed that theag enhancement in compressive and tensile
strength observed in these composites is due td dmtribution of the nano-SiC particles and
low degree of porosity which leads to effectivensfer of applied tensile load to the uniformly
distributed strong SiC particulates. The grainmefiient and strong multidirectional thermal
stress at the Al/SiC interface are also importantdrs, which play a significant role in the high
strength of the composites. SiC particles havengmgdined strengthening effect, since they act
as the heterogeneous nucleation catalyst for alwmiwhich is improved with increase in the
volume fraction [9, 31-33].

The difference between the coefficient of thermadamsion (CTE) values of matrix and ceramic
particles generates thermally induced residuaksé® and increases dislocations density upon
rapid solidification during the fabrication proce3$ie interaction of dislocations with the non-
shearable nano-particles increases the strengdl &dvcomposite samples. According to the
Orowan mechanism, the nano-SiC particles act amclbs to hinder the motion of dislocations
near the particles in the matrix. This effect oftigées on the matrix is enhanced gradually with
the increase of particulate volume fraction [2,.31]

According to the results of this experiment, quitgnificant improvement in tensile strength is
noted initially when particles are added; howeverther increase in SiC content leads to
reduction in strength values. The weakening factofsmechanical properties might be
responsible for this including particles clustensd aporosity. Hereby, it is believed that
strengthening and weakening factors of mechaniwadgrties could neutralize the effect of each
other and thus, the composite containing 3.5 voBi@ exhibits maximum tensile strength. The
thermal mismatch residual stress generated dueifferethce in the thermal expansion
coefficients between the matrix alloy and the mioihng phase is believed to enhance the
compressive property more than tensile propertgasfiposite. This might be the reason that
though the maximum tensile flow stress is obseraed®.5 vol. % SiC, increasing volume
fraction from 3.5 to 4.5 vol. % leads to incrementompressive flow stress [9, 31].
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Normally micron-sized particles are used to imprtwe ultimate tensile and the yield strengths
of the metal. However, the ductility of the MMCsteléorates significantly with high ceramic
particle concentration [35-37].

Fig.5 shows that the addition nano-particles deterisréite ductility of A356 alloy. The stir
casting method that is used in the present worlprtmduce the nano-composites can most
probably create different interfaces between naamtigdes and matrices and thus, encourage
crack initiation and propagation [38]. It is alsoted that the elongation remain rather constant
with the addition of nano particles. This is cotesi$ with the findings of Hassan and Gupta [39,
40].

The results of hardness for Al/nano-SiC compositessummarized ifrig. 6. It is clear from
the graph that the hardness of the compositegiehthan that of the non-reinforced alloy. The
higher hardness of the composites could be at&ibud the fact that SiC particles act as
obstacles to the motion of dislocation. The hardrieerement can also be attributed to reduced
grain size. As shown, hardness increases withriwuat of SiC present particles. It is believed
that since SIiC particles are harder than aluminllay,atheir inherent property of hardness is
rendered to the soft matrix [32, 33].

The weight loss versus sliding distance of the ispes is shown iffrig. 7. It is clear that the
weight loss has a declining trend with increasing particles volume fraction. This result is
consistent with the rule that in general, materigih higher hardness have better wear and
abrasive resistance [41].

The results show that the wear of the compositesedses with increasing SiC volume fraction.
It is generally believed that incorporation of haatticles to aluminum alloys contributes to the
improvement of the wear resistance of the base afica great extent [42]. SiC hard particles
resist against destruction action of abrasive aratept the surface, so with increasing its
content, the wear resistance enhances but it sébimsenhancement continues until the
reinforcement can improve the mechanical propesiieh as hardness e.g. in case of nano-sized
particle clustering, the trend of wear resistamogrovement may be affected by the particle
agglomeration.
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Hidden

In the composite, the reinforcement particles supploe Load, decrease the contact area
between the pin and counter disc surface and prekerscratch and cut from the surface [43].
This is probably the main reason for the observedarcement in wear resistance of the
composite.

Some researchers have shown that for loads beld¥; 20,05 and SiC reinforcement increased
the wear resistance of Al and Mg alloy matrix cosifes due to the load bearing capacity
improvement of the particulates and the formatiba ¢ransfer layer which protect the surface
from abrasion [41, 44]Fig. 8 shows the Fe content variation on the worn surfaitk SiC
content. It is observed that the formation of irarix layers on the contact surfaces increases

with increasing the SiC content.
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The input and output data set of the model istilated schematically ifrig. 9. In Fig. 10,
obtained mean absolute percentage error (MAPE)esalor training data were given for each
training algorithm. The obtained error values fdffedent number of neurons in the hidden
layers and number of hidden layers were analyzeldgaren, graphically. This figure also gives
information about the accuracy of four famous tiragralgorithms depending on the number of
neurons in the hidden layers and number of hiddgers. It is evident from this figure; the least
error value was obtained by using Bayesian regdtdn training algorithm with 1 hidden layer
and 6 neurons. Cyclical order incremental updatéh Wi hidden layer and 8 neurons in the
hidden layers follows Bayesian regularization tirggnalgorithm. Normally for most problems
one hidden layer would be good enough. Using moaa bne hidden layer actually does not
lead to a good model as they are very likely torditehe data. The much error was obtained
from the Batch unsupervised weight/bias training &#owell-Beale conjugate gradient back
propagation. The Bayesian regularization was fotmdbe the fastest training algorithm,
however it requires more memory with the same aromvergence bound compared to training
methods. MAPE is a good criterion to have informatiabout learning performance. The
iterations were continued until it is decided ttiegt minimum MAPE error is obtained.

In addition, success in the algorithms dependthefuser dependent parameters learning rate
and momentum constant. Faster algorithms such agsian regularization use standard
numerical optimization techniques. These algoritiefitainate some of the disadvantages above
mentioned. Bayesian regularization method is it #@capproximation of the Newton’'s method.
The algorithm uses the second order derivativeéhentost function so that a better convergence
behavior can be obtained. In the ordinary traimmethod, only the first-order derivatives are
evaluated and the parameter change informatioragensolely the direction along which the
cost is minimized, whereas the Bayesian regulaomatechnique extracts a biter parameter
change vector.

Fig. 11 shows the efficacy of the optimization scheme bgparing the prediction results with
the experimental values. There is a convincing egent between experimental values and
predicted values for elongation and weight lossarfio composite for Bayesian regularization
training algorithm.
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6 Conclusion

The effects of SiC reinforcement on hardness, Ensompressive and wear properties of the
composites were investigated. The addition of npemticles also resulted in significant
improvements in wear of the composites. Differamerggthening mechanisms contributed in
improvements of tensile and compressive behaviorthef composites including Orowan
strengthening, grain refinement, accommodation BE @nismatch between the matrix and the
particles, and the load bearing effects. Tribolagand mechanical properties are considered to
be related to cooling rate, temperature gradiedt\asilume percentage of nano-SiC particles.
The FEM method is used for discretization and ticutate the transient temperature field of
quenching. It is very difficult to generalize whitfaining algorithm of the neural network will
be the fastest one and can present a very goodrperfice for any given problem. However the
results of this study show that an ANN with 6 newgan lhidden layers with Bayesian
regularization method give the best propertiesiptieth of nano composites.
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