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Abstract 

In this paper, an upper bound approach is used to analyze the process of backward tube 

extrusion through arbitrarily curved punches. Based on the assumptions of proportional angles 

and proportional distances from the mandrel surface in the deformation zone, two kinematically 

admissible velocity fields are proposed and those are used in upper bound solution. By using the 

developed upper bound solution, optimum punch lengths which minimize the extrusion forces 

are determined for a streamlined punch shape and also for a conical punch. The corresponding 

results are also determined by using a finite element code, ABAQUS, and by doing some 

experiments and compared with the analytical results. This comparisons show a good agreement.  
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1 Introduction 

In backward extrusion, there is no relative movement between the initial billet and the container 

and it is characterized by the absence of friction between the initial billet surface and the 

container. This process needs lower extrusion force and also it is suitable for producing partially 

extruded products because of the simplicity in ejecting of the extruded part from the container as 

compared with forward extrusion process. In this process, such as other metal forming 

processes, calculation and optimization of extrusion force are important. Among various 

analytical and numerical approximate methods of solution, the upper bound technique and the 

finite element method have been widely used for the analysis of the extrusion process. One of 

the limitations of most of the current FEM solution schemes for metal forming is that they do 

not provide parametric analysis. Hence, any parametric investigation is usually done manually 

by changing one FE model to another until a feasible solution is obtained. Establishment of 

analytical solutions for extrusion process facilitates parametric study and may help in 

understanding the mechanics behind the extrusion processes better. Even though the finite 

element gives detailed information, it takes considerable CPU time. Using the upper-bound 

technique has the merits of saving computer’s CPU and it appears to be a useful tool for 

analyzing metal forming problems when the objective of such an analysis is limited to prediction 

of deformation load and/or to study metal flow during the process. A number of people have 

used the upper bound method to analyze the extrusion process. Avitzur [1-3] developed models 

for forward rod extrusion through conical dies using the upper bound approach. Chen and Ling 

[4] developed a velocity field for axisymmetric extrusions through cosine, elliptic and 
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hyperbolic dies. Zimmerman and Avitzur [5] also modeled extrusion using the upper bound 

method with generalized shear boundaries. Mehta et al. developed a kinematically admissible 

velocity field and compared it with the experimentally obtained flow field using the visio-

plasticity technique [6]. Chang and Choi developed an upper bound solution for tube extrusion 

through curved dies [7]. Hartley proposed a kinematically admissible velocity field for forward 

tube extrusion through a conical die, which reduces to the kinematically admissible velocity 

field for rod extrusion in the limit as the mandrel diameter goes to zero [8]. Yang et al. [9] as 

well as Yang and Han [10] developed upper bound models for forward rod extrusion with 

streamlined dies. An upper bound solution for strain hardening materials has been developed by 

Yang et al. for tube extrusion through streamlined dies [11]. They extended the same analysis 

for three-dimensional forward extrusion of arbitrarily shaped tubes [12]. Altan proposed a 

deformation model for tube extrusion through a flat die by assuming the flow lines to be straight 

[13]. Bakhshi et al. proposed an optimum punch profile in backward rod extrusion [14]. Saboori 

et al. studied the energy consumption in forward and backward rod extrusion [15]. A feature 

based upper bound model to analyze the backward tube extrusion proposed by Malpani and 

Kumar [16]. The analysis was based on a kinematically admissible velocity field to obtain the 

optimal extrusion pressure by optimizing the die length. Ebrahimi et al. [17] proposed a 

kinematically admissible velocity field for forward tube extrusion through conical dies. Gordon 

et al. were developed an adaptable die design method for forward rod extrusion and described 

them in details in a series of papers [18-20].  

The purpose of this paper is to develop a velocity field that applicable to backward tube 

extrusion through arbitrarily curved punches. The proposed velocity field is used to find out an 

optimal streamlined punch length and the corresponding extrusion force for a given process 

conditions. The investigation is also performed using the finite element code, ABAQUS and by 

doing some experiments. 
 
 

2 Upper bound analysis 

Fig. 1 shows a schematic diagram of the tube backward extrusion through an arbitrarily shaped 

punch with fixed cylindrical shaped mandrel. In this figure oR and fR are outer radii of the initial 

and the extruded tube and mR is the mandrel radius. To analyze the process by using the upper 

bound method, the material under deformation is divided into three zones. In zone I, material is 

stationary and in zone III the material moves rigidly with the velocity fV . Zone II is surrounded 

by two velocity discontinuity surfaces 1S , 2S , mandrel surface and the punch surface. The 

punch surface, which is labeled as )(r in Fig. 1, is given in the spherical coordinate system,

  ,,r , where )(r is the angular position of the punch surface as a function of the radial 

distance from the origin. The origin of spherical coordinate system is located at point O which is 

defined by the intersection of the axis of symmetry with the line that goes through the point 

where the punch begins and the exit point of the punch. The  

spherical velocity discontinuity surface 1S is located at distance or from the origin and the 

spherical velocity discontinuity surface 2S is located at distance fr from the origin.  

From Fig. 1, we have 
 

sinomo rRR  , sinfmf rRR                                                                                        (1) 
 

where is the angle of the line connecting the initial point of the curved punch to the final point 

of the punch and LRR fo /)(tan  , where L is punch length. 

The exit velocity fV is determined by 
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Substituting Eq. (2) into Eq. (3), the exit velocity fV can be written as 
 

 
Fig. 1 Schematic diagram showing backward tube extrusion through an arbitrarily curved 

punch. 
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For small radius of the mandrel, the above equation can be simplified as 
 

o

f

o
f V

r

r
V )1(

2

2

                                                                                                                     (4) 

 

The first step in the upper bound analysis is to choose an admissible velocity field for the 

material undergoing plastic deformation. The assumption of velocity field will influence the 

prediction of load and metal flow. The velocity field that has been derived from 

incompressibility condition and satisfies the velocity boundary conditions is a kinematically 

admissible velocity field.  
 
 

2.1 Velocity field in the deformation zone  

Two assumptions that were used by Gordon et al. [18] for forward rod extrusion are used here 

for backward tube extrusion process. If the assumption of proportional angles in the deformation 

zone is made, then radial velocity component is written as 
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Assuming the proportional distance from the mandrel surface then 
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The full velocity field for the flow of the material in deformation zone is obtained by invoking 

volume constancy. Volume constancy in spherical coordinate system is defined as 
 

0   
rr                  (7) 

 

where ii is the normal strain rate component in the i -direction. The strain rates in spherical 

coordinates are defined as 
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For the axisymmetric extrusion (i.e. 0V ) and the angular component of velocity, V is 

obtained by placing rV , from Eqs. (5)-(6) into Eqs. (7)-(8), solving for V and applying 

appropriate boundary conditions. Then, there are two velocity fields depending on the mentioned 

assumptions: 

(1) Assuming proportional angles in the deformation zone:  
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0V                                                                                                                                           (9)         

(2) Assuming the proportional distances from the mandrel surface: 
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If the exit velocity fV is determined by Eq. (4), then Eqs. (9)-(10) satisfy the incompressibility 

condition and the boundary conditions on velocity discontinuity surfaces 1S , 2S and  mandrel 

surface as well as the punch surface. Therefore, they are deemed to be kinematically admissible 

fields. 

Based on the proposed velocity fields, the strain rate fields for deformation zone can be obtained 

by Eq. (9). With the strain rate field and the velocity field, the standard upper bound method can 

be implemented. This upper bound model involves calculating the internal power of deformation 

over the deformation zone volume, calculating the shear power losses over the surfaces of 

velocity discontinuity, and the frictional power losses along frictional surfaces. Since, no 

deformation occurs in zones I and III, therefore, the strain rate components are zero. 
 
 

2.2 Internal power of deformation  

The internal power of deformation in an upper bound model is 
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Internal power of zones I and III are zero and the equation to calculate the internal power of 

deformation in zone II is  
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where 0 is the mean flow stress of material and is given by 
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2.3 Shear power losses  

The equation for the power losses along a shear surface of velocity discontinuity is 
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The shear power losses along the velocity discontinuity surfaces
1

S and 2S with assuming 

proportional angles in the deformation zone, become       
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and with assuming the proportional distances from the mandrel surface, become 
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2.4 Friction power losses  

The general equation for the friction power losses for a surface with a constant friction factor m
is 
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For punch surface
3

S the differential surface and the magnitude of the velocity difference are 
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where is local angle of the punch surface with respect to the local radial velocity component 

and 
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The frictional power losses along the surface 4S , shown in Fig. 1, with assuming proportional 

angles in the deformation zone is calculated as 
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and with assuming the proportional distances from the mandrel surface, it becomes 
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The frictional power losses along the surface 5S can be given by 
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Finally, the power dissipated on the frictional surface 6S , punch land, becomes 
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where fL is the length of the punch land. 

Based on the upper bound model, the total power needs for backward tube extrusion process is 

obtained by summing the internal power and the power dissipated on all frictional and velocity 

discontinuity surfaces. Therefore, the total upper bound solution for the relative extrusion 

pressure is given by 
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A MATLAB program has been implemented for the previously derived equations and is used to 

study the backward tube extrusion process for different punch shapes and different process 

conditions. It includes a parameter L , punch length, which should be optimized. 

 
 

3 Comparison of the velocity fields 

The developed velocity fields and the upper bound model can be used for backward tube 

extrusion through punches of any shape if the punch profile is expressed as equation )(r . To 

compare the upper bound results obtained for the two velocity fields, the die profile introduced 

by Yang and Han [9, 10] for forward rod extrusion is selected for the profile of the punch. They 

created a streamlined die shape as a fourth-order polynomial whose slope is parallel to the axis 

at both entrance and exit of the die. Die shape of Yang and Han can be expressed in spherical 

coordinate system, shown in Fig. 1, as  
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where LL f is the relative position of the inflection point for the die and can vary from 0 to 1 

[20]. 

(b) 

(c) 

Fig. 2 Relative extrusion pressures for extrusion through a Yang and Han punch shape using 
the angular and sine velocity fields: (a) for 4.0/ of RR and 2.0m ; (b) for 

5.0/ of RR and 2.0m ; (c) for 5.0/ of RR and 5.0m . 
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Fig. 2 shows the relative average extrusion pressure calculated from the two velocity fields as a 

function of the punch length. This figure includes two different tube geometry ( 4.0/ of RR  

for Fig. 2a and / 0.5f oR R   for Figs. 2b-2c) and two different friction factors ( 2.0m  for Figs. 

2a-2b and 5.0m  for Fig. 2c). These figures show that the assuming the proportional distances 

from mandrel surface provide a lower upper bound solution.  
 
 

4 Comparison of analytical results with the FEM results and experiment  

The backward tube extrusion processes is simulated using the finite element software, 

ABAQUS. Due to the symmetry of the process, two-dimensional axisymmetric models are used 

for FEM analyses. In each case, the whole model is meshed with CAX4R elements. Fig. 3a 

illustrates the mesh used to analyze the deformation. Punch, mandrel and container undergo  

elastic strains only. Thus, it is not necessary to use a fine mesh in these two pieces. However, 

sufficiently fine meshing is essential in material which undergoes plastic deformation. The 

container is fixed by applying displacement constraint on its nodes while the punch model is 

loaded by specifying displacement in the axial direction. Deformed model is shown in Fig. 3b.  
 

                                    
(a) The finite element mesh                         (b) The deformed mesh  

Fig. 3 The finite element mesh and the deformed mesh. 

For comparison, the corresponding results are also obtained using experiment. A 50 kN STM 

universal testing machine is used to perform the experiments, which is illustrated in Fig. 4, 

together with a die-set. A sodium based grease lubricant is applied manually on the contact 

surfaces of billets and die-sets. The initial tube was lead with length 40 mm, 11oR  mm, 

6fR , 3mR mm and the flow stress given by tensile test as   
 

436.0
97.38    (MPa)                                                                               (30) 
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Based on Eq. (31) a mean flow stress of 55.5 MPa was estimated for the material used.  

The initial tube and the extruded sample corresponding to the conical punch, punch length 8 

mm, are shown in Fig. 5. Experimental load–displacement curve of the conical punch is shown 

in Fig. 6. By comparing the experimental results of the conical punch with the FEM simulation 

results, it is found that the shear friction factor m for the experiment is about 0.5 and it is used in 

upper bound model. 
 

 

Fig. 4 The 50 kN STM universal testing machine with a die-set mounted. 
 

                
(a)  initial tube                  (b) conical punch                 (c) extruded tube 

Fig. 5 Initial tube and extruded sample for conical punch. 
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Fig. 6 Experimental force-displacement curve for conical die. 
 
 

In Fig. 7, the analytical, experimental and FEM force-displacement curves for conical punch is 

compared. The results show good agreement between the analysis and experiment. As shown in 

this figure, the theoretically predicted extrusion force is higher than the experimental and FEM 

results, which is due to the nature of the upper bound theory.  
 

 

Fig. 7 Comparison between the analytical, experimental and FEM force-displacement curves 
for conical punch. 

 

 

Extrusion force variations versus punch length for backward tube extrusion through conical 

punch and the Yang and Han punch shape obtained from the upper bound model, for 6fR , 

mm 11oR  mm, 3mR mm and 3.0m , are compared with each other in Fig. 8. As can be 

seen from the figure, the trend in the two curves is similar. Also, at any length of the punch, the 

required extrusion force in the optimum Yang and Han punch shape is less than that in the 

optimum conical punch. 
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Fig. 8 Comparison between the extrusion force variation versus punch length for conical 
punch and Yang and Han punch shape obtained from the upper bound ( 6fR mm, 

11oR mm, 3mR mm and 3.0m ) 
 

 

In Fig. 9, the extrusion force displacement curve for optimum Yang and Han punch shape 

obtained from the upper bound solution and the FEM simulation is compared with each other. 

The results show good agreement between the analysis and FEM. As shown in this figure, at the 

early stage of extrusion, unsteady state deformation occurs, and the materials have not yet filled 

up the cavity of the punch completely. Thus, the extrusion force increases as the extrusion 

process proceeds. After the materials have filled up the cavity of the punch completely, the 

extrusion forces are constant. That is because of the frictional surfaces and shear surfaces are no 

change as the punch is advanced.  

 

Fig. 9 Comparison of analytical and FEM force-displacement curves for optimum Yang and 
Han punch shape. 
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The effect of friction factor upon extrusion force is shown in Fig. 10. As shown in these figures, 

at a punch length that called the optimum length, the extrusion force is minimized. As shown in 

this figure, the extrusion force increases with increasing the friction factor. Also, with increasing 

the friction factor, the optimum length of punch is increased. 
 

 

Fig. 10 Effect of friction factor upon the extrusion force for Yang and Han punch shape. 
 
 

5 Conclusions 

In this paper two velocity fields and their power terms for backward tube extrusion process 

through punches of any shape were presented. Derivations for three main components of the 

consumed power including deformation, discontinuity and frictional powers were presented.  

The results of upper bound models for two velocity fields were compared to each other for 

extrusion through a streamlined die shape. The results demonstrated that assuming proportional 

distances from the mandrel surface in the deformation zone was better than assuming the 

proportional angles. Comparison of the measured extrusion force with that estimated by the 

proposed upper bound solution showed a good agreement. The analytical results were also in 

good agreement with the FEM data. 

The developed upper bound model can be used for finding the optimum punch length which 

minimizes the extrusion force for a given punch shape and process parameters. 
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Nomenclature 
*

J                    externally supplied power of deformation 

m                      constant friction factor 

k                       material yield strength in shear  

L                       punch length 

fL                    bearing length 

r , ,               spherical coordinate system 

fr                      radial position of the velocity discontinuity surface 2S  

or                      radial position of the velocity discontinuity surface 1S  

S                        area of frictional or velocity discontinuity surface 

rV , V , V         radial, angular and third components of velocity 
V                      volume of integration 

fV                    velocity of final tube 

oV                     velocity of punch 

6543 ,,, ffff WWWW    frictional power losses along the frictional surfaces 543 ,, SSS and 6S , 

respectively 

iW                    internal power of deformation 
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21, SS WW        shear power losses along the velocity discontinuity surfaces 1S and 2S

, respectively 

               angle of the line connecting the initial point of the punch to the final 

point of the punch 

V                  velocity difference 

rr ,  ,      normal strain rate components   

 r
 ,  r

 ,     shear strain rate components 

                    local angle of the punch surface with respect to the local radial 

velocity component 

                    flow stress of the workpiece material 

0                   mean flow stress of the workpiece material 

                     frictional shear stress 

                    angular position of the punch surface as a function of radial position 

 

 

 

 


