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ABSTRACT  

A mathematical equation has been derived that describes impurity distribution in ingot after second pass of zone refining. While an 

exponential impurity distribution is calculated by a simplified model after first pass, second pass is described by mixed linear - expo-

nential model. Relationship of transformed impurity concentration is constant over whole length of semi-infinite ingot for first pass. 

However, it has linear trend for second pass. Last part of molten zone at infinity solidifies differently and can be described mathemat-

ically as directional crystallization. A mathematical tool devised for second pass of zone refining can be tried to be used for derivation 

of functions of more complex models that would describe impurity distribution in more realistic way compared to simplified approach. 

Such models could include non-constant distribution coefficient and/or shrinking or widening molten zone over a length of ingot. 
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INTRODUCTION 

 
A distribution of impurities between liquid and solid phase dur-

ing crystallization was recognized many years ago. These phe-

nomena were already mentioned by Nerst in his paper about the-

ory of the kinetics of heterogeneous reactions in 1904 [1].  

A zone refining (zone melting) technique is known almost one 

century. It is based on a different concentration of impurity in 

solid and liquid at their phase boundary. According to Feigelson 

first reported use of zone melting was by Kapica in 1928 [2 and 

citation thereof].  

Among other scientists W. G. Pfann worked intensively on the-

ory and practice of zone melting and other improved techniques 

of this kind. He describes them in his book [3]. When ingot with 

evenly distributed impurity over its whole volume is treated by 

zone refining, an impurity accumulates - when distribution co-

efficient is less than one – in melt.  Mathematical equation de-

scribing distribution of impurity after first pass can be written in 

a form 

 

𝑐𝑠1(𝑥) = 𝑐0 + 𝑐0 ∙ (𝑘 − 1). 𝑒
−𝑘.𝑥

ℎ                      (1.) 

 

where “cs1(x)” is concentration of impurity in solid phase after 

first pass, “c0“ is initial concentration of evenly distributed im-

purity, “k” is distribution coefficient (ratio of impurity concen-

tration in solid and liquid phase), “h” is width of molten zone 

and “x” is distance from beginning of ingot. Equation (1) holds 

when width of molten zone is constant during zone melting, 

cross-section area is constant, “k” keeps constant, no volume 

changes take place during solidification, mixing of melt is per-

fect and no diffusion takes place in solid phase. An above equa-

tion is valid for full ingot length except for last molten zone 

which solidifies fractionally [3]. Equation (1) is sometime as-

cribed to Pfann, however he gives credit for derivation of this 

equation to W. T. Read [4]. 

In a chapter about multi-pass zone melting in [3] Pfann mentions 

“It would be most helpful to have a general equation that ex-

presses solute concentration as a function of distance, for any 

number of passes through an ingot of specified length. No such 

equation has been derived. While the concepts of zone refining 

are simple, it is apparently difficult to describe multi-pass oper-

ations mathematically.“ Therefore several mathematical meth-

ods were devised to cope with this problem, e.g. [5-10]. They 

are, in principle, iterative numerical methods.  

Situation with mathematical solution of zone melting has 

changed when powerful computer become readily available. 

Specific simulation software can be written and run where dy-

namic changes during zone melting can be analyzed [11-13 and 

citations thereof]. Although simulations are helpful, data need to 

be fed into software which is specific to the analyzed parame-

ters. 

 

METHODS 

 
Mathematical description of impurity distribution during 

second pass of zone refining 

The details of method for evaluation of mathematical equations 

describing impurity distribution after second pass of zone refin-

ing is shown in Appendix.  

Integral material balance equation of zone refining for second 

and higher passes was “resistant to solution” for almost 70 years. 

Finally, application of multidisciplinary approach and transfor-

mation of integral equation into its differential form proved 

fruitful leading to an analytical solution.  
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RESULTS AND DISCUSSION 
 

Resulting equation of impurity distribution after second pass of 

zone refining is as follows: 

 

cs2(𝑥) = 𝑐0 + 𝑐0 ∙ (𝑘 − 1) ∙ (2 − 𝑒−𝑘) ∙ 𝑒
−𝑘.𝑥

ℎ  

+
𝑘

ℎ
∙ 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒−𝑘 ∙ 𝑥 ∙ 𝑒

−𝑘.𝑥
ℎ  

(2.) 

 

It can be written in more convenient way as: 

 

cs2(𝑥) = 𝑐0 ∙ [1 + (𝑎2,0 + 𝑎2,1 ∙ 𝑥) ∙ 𝑒
−𝑘.𝑥

ℎ ] 

   
(2a.) 

where 

 

𝑎2,0 = 𝑎1,0 ∙ (2 − 𝑒−𝑘); 

  𝑎2,1 = 𝑎1,0 ∙
𝑘

ℎ
∙ 𝑒−𝑘;   

 𝑎1,0 = 𝑘 − 1 

(2b.) 

 

Boundary concentration, i.e. concentration of impurity at posi-

tion x=0 is k.c0 for first pass. It is intuitively expected that 

boundary concentration should, at position x=0, equal k2.c0 for a 

second pass. However, as follows from equation (2) boundary 

concentration is different. Reason for it is as follows: impurity 

is evenly distributed over whole volume of ingot before first 

pass. Concentration of impurity in first molten zone with width 

of “h” is constant and equals c0. Therefore ingot at position x=0 

solidified with impurity concentration k.c0. This is not valid for 

second pass since distribution of impurity over a volume of ingot 

is not constant anymore. It needs to be calculated as average con-

centration within molten zone as follows 

 

𝑐𝐿2(0 ÷ ℎ) =
1

ℎ
∙ ∫ (𝑐0 + 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒

−𝑘.𝑡

ℎ ) ∙ 𝑑𝑡
ℎ

0
=

1

ℎ
∙ (𝑐0 ∙

ℎ − 𝑐0 ∙
ℎ

𝑘
∙ (𝑘 − 1) ∙ 𝑒−𝑘 + 𝑐0 ∙

ℎ

𝑘
∙ (𝑘 − 1))                         (3.) 

 

Ingot at boundary position x=0 solidifies as  

 

𝑐𝑠2(0) = 𝑘 ∙ 𝑐𝐿2(0 ÷ ℎ) =
𝑘

ℎ
∙ (𝑐0 ∙ ℎ − 𝑐0 ∙

ℎ

𝑘
∙ (𝑘 − 1) ∙ 𝑒−𝑘 +

𝑐0 ∙
ℎ

𝑘
∙ (𝑘 − 1)) = 𝑐0 + 𝑐0 ∙ (𝑘 − 1) ∙ (2 − 𝑒−𝑘)                  (4.) 

 

Visualization of impurity distribution after second pass of 

zone refining 

Surface of impurity concentration as a function of ingot length 

and distribution coefficient with dimensionless molten zone 

width of 0.2 is shown in Fig. 1. All units are arbitrary. Isolines 

of distribution coefficient run from left to right.  

 
Fig. 1 Surface of impurity concentration as a function of ingot 

length and distribution coefficient [19] 

 

Surface of impurity concentration as a function of ingot length 

and molten zone width with distribution coefficient of 0.2 is 

shown in Fig. 2. All units are arbitrary. It is seen in Fig. 2 that 

efficiency of impurity removal increases non-linearly with in-

creasing molten zone width. 

 
Fig. 2 Surface of impurity concentration as a function of ingot 

length and molten zone width [19] 

 

Linearization of impurity distribution equations for first 

and second pass of zone refining 

It is worth to note an interesting property of equation (1) and (2). 

When constant c0 is subtracted from both sides, then both sides 

are divided by exponential member and initial impurity concen-

tration the following relations hold: 

 
𝑐𝑠1(𝑥)−𝑐0

𝑐0∙𝑒
−𝑘.𝑥

ℎ

= (𝑘 − 1)                                                                (5.) 

 
cs2(𝑥)−𝑐0

𝑐0∙𝑒
−𝑘.𝑥

ℎ

= (𝑘 − 1) ∙ (2 − 𝑒−𝑘) +
𝑘

ℎ
∙ (𝑘 − 1) ∙ 𝑒−𝑘 ∙ 𝑥         (6.) 

 

Left side of equation (5) is constant for all values of independent 

variable (length of ingot) while in case of equation (6) it keeps 

linear trend. Note, that both sides of equation (5) and (6) are di-

mensionless. 

  

CONCLUSION 
 

A mathematical description of impurity distribution in ingot af-

ter second pass of zone refining has been derived using integral-

differential approach. It is of mixed linear - exponential type.  

From a mathematical point of view an integral – differential ap-

proach seems worth to try in search of equations for more com-

plex models of zone refining such as non-constant distribution 

coefficient and/or shrinking or widening of molten zone over 

length of ingot. 

Efficiency of impurity removal depends non-linearly on both 

distribution coefficient as well as molten zone width.  
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Appendix 

Evaluation of equation for second pass of zone melting 

Distribution of impurity in zone refined ingot after first pass is 

mathematically described by eq. (1). Distribution of impurity 

during second pass is schematically shown in Fig. 3. This ap-

proach is based on material balance before and after second pass. 

A problem with end part of ingot can be solved mathematically 

as zone refining of semi-infinite sample. From a practical point 

of view, last ingot zone with width of “h” can be treated as frac-

tional solidification. It accumulates high concentration of impu-

rity.  

 
Fig. 3 Schematic distribution of impurity during second pass of 

zone refining 

 

Material balance equation of impurity distribution for second 

pass that follows after first pass of zone refining can be written 

as follows 

∫ cs2(𝑡) ∙ 𝑑𝑡
𝑥

0
+

ℎ

𝑘
∙ cs2(𝑥) = ∫ (𝑐0 + 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒

−𝑘.𝑡

ℎ ) dt
𝑥+ℎ

0
   

                 (7.) 

Right side of equation (7) can be evaluated as it is known func-

tion describing impurity distribution in ingot after first pass. 

Then a substitution 𝑦 = ∫ 𝑐2𝑠(𝑡) ∙ 𝑑𝑡
𝑥

0
 is applied. Second mem-

ber of equation (7) on left side is thus  𝑦´ =
𝑑𝑦

𝑑𝑥
 multiplied by  

ℎ

𝑘
. 

Equation (7) can be written in a form 

 

𝑦 +
ℎ

𝑘
∙ 𝑦´ = 𝑔(𝑥)                                                                   (8.) 

 

where 

𝑔(𝑥) = ∫ (𝑐0 + 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒
−𝑘.𝑡

ℎ ) 𝑑𝑡

𝑥+ℎ

0

 

Multiplying both sides of equation (7) by  
𝑘

ℎ
  gives non-homoge-

neous linear differential equation of first order [15] in a form 

 
𝑘

ℎ
∙ 𝑦 + 𝑦´ =  

𝑘

ℎ
∙ (𝐿 + 𝑐0 ∙ 𝑥 − 𝑀 ∙ 𝑒

−𝑘.𝑥

ℎ  )                               (9.)  

where 

𝐿 = 𝑐0 ∙ ℎ +  
ℎ

𝑘
∙ 𝑐0 ∙ (𝑘 − 1) 

𝑀 =
ℎ

𝑘
∙ 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒−𝑘 

 

This kind of differential equations is used to solve integral-dif-

ferential problems, e.g. [16-18] – integral equation (7) is trans-

formed into differential form (9). 

General solution of equation (9) is [15]: 

 

𝑦 =
1

𝐸(𝑥)
∙ (∫ 𝐸(𝑥) ∙ 𝑔(𝑥) ∙ 𝑑𝑥 + 𝐶)                  (10.) 

 

𝑤ℎ𝑒𝑟𝑒   𝐸(𝑥) = 𝑒∫ 𝑓(𝑥)∙𝑑𝑥 = 𝑒
𝑘.𝑥

ℎ                    

                                            

Integrating function g(x) in equation (8) and inserting result into 

equation (9) gives a solution 

 

𝑦 = (𝐿 + 𝑐0 ∙ 𝑥 −
ℎ

𝑘
∙ 𝑐0 −

𝑘

ℎ
∙ 𝑀 ∙ 𝑥 ∙ 𝑒

−𝑘.𝑥

ℎ + 𝐶 ∙ 𝑒
−𝑘.𝑥

ℎ )        (11.) 

 

Constants L and M are shown in equation (9), constant C need 

to be evaluated from boundary condition – equation (4). As fol-

lows from equations (7), (8) and (11), a final form of mathemat-

ical description of impurity distribution after second pass of 

zone refining can be written as  

 

cs2(𝑥) =
𝑑𝑦

𝑑𝑥
= 𝑐0 + 𝑐0 ∙ (𝑘 − 1) ∙ (2 − 𝑒−𝑘) ∙ 𝑒

−𝑘.𝑥

ℎ +
𝑘

ℎ
∙ 𝑐0 ∙

(𝑘 − 1) ∙ 𝑒−𝑘 ∙ 𝑥 ∙ 𝑒
−𝑘.𝑥

ℎ                      (12.) 

 

Verification of equation for second pass of zone refining 

Check of correctness of derived equation (2) for second pass of 

zone refining is done by inserting of equation (1) and (2) into 

material balance equation (7): 

 

∫ (𝑐0 + 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒
−𝑘.𝑡

ℎ ) ∙ 𝑑𝑡
𝑥+ℎ

0
= 𝑐0 ∙ (𝑥 + ℎ) −  

ℎ

𝑘
∙ 𝑐0 ∙

(𝑘 − 1) ∙ 𝑒−𝑘𝑒
−𝑘.𝑥

ℎ +
ℎ

𝑘
∙ 𝑐0 ∙ (𝑘 − 1)               (13a.) 

 
ℎ

𝑘
∙ cs2(𝑥) =

ℎ

𝑘
∙ 𝑐0 +

ℎ

𝑘
∙ 𝑃 ∙ 𝑒

−𝑘.𝑥

ℎ +
ℎ

𝑘
∙ 𝑄 ∙ 𝑥 ∙ 𝑒

−𝑘.𝑥

ℎ               (13b.)  

https://doi.org/10.1016/C2011-0-04376-4
http://www.gnuplot.info/
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where 

 

𝑃 = 𝑐0 ∙ (𝑘 − 1) ∙ (2 − 𝑒−𝑘) 

𝑄 =
𝑘

ℎ
∙ 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒−𝑘 

 

  ∫ cs2(𝑡) ∙ 𝑑𝑡 =
𝑥

0
𝑐0 ∙ 𝑥 − (

ℎ

𝑘
∙ 𝑃 + 𝑄 ∙

ℎ2

𝑘2
) ∙ 𝑒

−𝑘.𝑥

ℎ − 𝑄 ∙
ℎ

𝑘
∙ 𝑥 ∙

𝑒
−𝑘.𝑥

ℎ  +
ℎ

𝑘
∙ 𝑃 + 𝑄 ∙

ℎ2

𝑘2
                                                         (13c.) 

 
ℎ

𝑘
∙ 𝑃 + 𝑄 ∙

ℎ2

𝑘2
+

ℎ

𝑘
∙ 𝑐0 + 𝑐0 ∙ 𝑥 − 𝑄 ∙

ℎ2

𝑘2
∙ 𝑒

−𝑘.𝑥

ℎ  +
ℎ

𝑘
∙ 𝑃 ∙ 𝑒

−𝑘.𝑥

ℎ −

ℎ

𝑘
∙ 𝑃 ∙ 𝑒

−𝑘.𝑥

ℎ +
ℎ

𝑘
∙ 𝑄 ∙ 𝑥 ∙ 𝑒

−𝑘.𝑥

ℎ −
ℎ

𝑘
∙ 𝑄 ∙ 𝑥 ∙ 𝑒

−𝑘.𝑥

ℎ = 𝑐0 ∙ (𝑥 + ℎ) −

 
ℎ

𝑘
∙ 𝑐0 ∙ (𝑘 − 1) ∙ 𝑒−𝑘𝑒

−𝑘.𝑥

ℎ +
ℎ

𝑘
∙ 𝑐0 ∙ (𝑘 − 1)            (14.) 

 

Last four members on left side of equation (14) cancel each other 

and remaining members on left and right side are equal – mate-

rial balance equation (7) is satisfied.  
 


