IDENTIFICATION OF DRIVING FORCES FOR THE RECOGNITION PROCESSES ON MOLECULARLY IMPRINTED POLYMERS
DOI:
https://doi.org/10.2478/nbec-2013-0007Keywords:
molecularly imprinted polymers, thermodynamic analysis, van’t Hoff equationAbstract
In this paper the thermodynamic analyses were used to calculate the contributions of entropic and enthalpic terms of the binding processes of selected derivatives of alkoxy-substituted phenylcarbamic acid (MEP) and phenolic acids (PAs) on the series of molecularly imprinted polymers (MIPs) and corresponding non-imprinted polymers (NIPs). All polymers were prepared by a bulk polymerization method with different porogens and functional monomers. The thermodynamic assessments were based on the quantification by HPLC measurements of the analytes tested in different mobile phases and at temperature range from 293 K to 333 K. The thermodynamic parameters were determined from the van’t Hoff plots - dependences between logarithms of the retention factors of studied analytes (ln k) and the inverse value of the temperature (1/T). Almost all data showed that enthalpic term was the dominating driving force for the investigated analytes.
Downloads
Published
How to Cite
Issue
Section
License
All papers published in the Nova Biotechnologica et Chimica (NBC) are published under a CC-BY licence (CC-BY 4.0). Published materials can be shared (copy and redistribute the material in any medium or format) and adapted (remix, transform, and build upon the material for any purpose, even commercially) with specifying the author(s).