@article{Luptakova_Macingova_Harbulakova_2021, title={Positive and negative aspects of suplhate-reducing bacteria in environment and industry}, volume={9}, url={https://journals.scicell.org/index.php/NBC/article/view/1271}, DOI={10.36547/nbc.1271}, abstractNote={The submitted work is oriented on the study of two aspects of the sulphate-reducing bacteria metabolism: the metals bioprecipitation and the concrete biodeterioration. The bioprecipitation of metals with the bacterially produced hydrogen sulphide by sulphate-reducing bacteria (SRB) represents the positive effect of the SRB existence in the environment. It allows the industrial exploitation in the area of the removal metals from industrial wastewaters. Referred method involves principal stages such as: hydrogen sulphide bacterial production, metals precipitation by biologically produced hydrogen sulphide, metal sulphides separation, setting pH of the filtrate from previous steps by 1M NaOH and metal hydroxides separation. The basis of the first stage i.e. the hydrogen sulphide bacterial production is the cultivation of SRB. In the laboratory conditions the sodium lactate is the energetic substrate for the growth of bacteria. Its price is not economic for the application in the practice and is needed investigate the alternative substitutes. Therefore was studied the cultivation of sulphate-reducing bacteria to using the selected energetic substrates such as: calcium lactate, glycerol and whey. Experimental studies confirm that all chosen substrates are suitable alternative substrates of sodium lactate for the bacterial sulphate-reduction. In the regard to the efficiency of bacterial sulphate reduction the calcium lactate is the best. The biodeterioration of the concrete presents the negative effect of the SRB existence in the environment. The research was oriented on the simulation of the biodeterioration of concrete samples under the simultaneous influence of the sulphur-oxidising bacteria genera Acidithiobacillus thiooxidans and sulphatereducing bacteria genera Desulfovibrio in the environs of the waste water, the acid mine drainage, the nutrient medium and the distilled water. The observation of the surface structure changes of concrete samples confirms the highest biodeterioration influences in the case of the acid mine drainage application.}, number={2}, journal={Nova Biotechnologica et Chimica}, author={Luptakova, Alena and Macingova, Eva and Harbulakova, Vlasta}, year={2021}, month={Nov.}, pages={147–154} }