Perspective pretreatment method of beech and poplar wood and wheat straw in 2G biofuel production processing
DOI:
https://doi.org/10.36547/nbc.v19i1.581Keywords:
Beech wood, Cellulose accessibility, Enzymatic hydrolysis, Poplar wood, Steam explosion pretreatment, Wheat strawAbstract
Monosaccharides such as glucose, xylose and arabinose are the main monomer units of which cellulose and hemicelluloses are composed. The cellulose and hemicelluloses content in many biomass species makes them suitable for 2G bioethanol production. Today, when 1G bioethanol production is closely monitored due to its enormous consumption of food raw materials such as wheat or corn grains, larger companies are gradually moving to pilot operations of 2G bioethanol production. However, cellulose and hemicelluloses contained in biomass are only very slightly accessible to enzymes used in 2G bioethanol production. Therefore pretreatment methods such as steam explosion are very suitable to use for fractionation of cell structure. In this paper, we tested the cellulose accessibility. We compared the cellulose accessibility of wheat straw particles with wooden particles obtained from beech and poplar. Particle size was less than 0.7 mm. We identified the optimal conditions of steam explosion pretreatment at reaction temperature of 200 °C for wheat straw, poplar and beech wood particles. The main indicator of accessibility was concentration of monomers obtained from enzymatic hydrolysis. The concentration of monomer was determined by high performance liquid chromatography. The experimental results showed different accessibility measure for each type of biomass species.
Downloads
Published
How to Cite
Issue
Section
License
All papers published in the Nova Biotechnologica et Chimica (NBC) are published under a CC-BY licence (CC-BY 4.0). Published materials can be shared (copy and redistribute the material in any medium or format) and adapted (remix, transform, and build upon the material for any purpose, even commercially) with specifying the author(s).